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Abstract

The United States Army uses Vendor Managed Inventory (VMI) replenishment to

manage resupply operations while engaged in a combat environment; upper-echelon

organizations (e.g., a brigade) maintain situational awareness regarding the inven–

tory of lower-echelon organizations (e.g., battalions and companies). The Army is

interested in using a fleet of cargo unmanned aerial vehicles (CUAVs) to perform re–

supply operations. We formulate an infinite horizon, discrete time stochastic Markov

decision process model of the military inventory routing problem with direct delivery,

the objective of which is to determine an optimal unmanned tactical airlift policy

for the resupply of geographically dispersed brigade combat team elements operating

in an austere, Afghanistan-like combat situation. An approximate policy iteration

algorithm with Bellman error minimization using instrumental variables is applied to

determine near-optimal policies. Within the least-squares temporal differences policy

evaluation step, we use a modified version of the Bellman equation that is based on

the post-decision state variable. Computational results are obtained for examples

based on representative resupply situations experienced by the United States Army

in Afghanistan.

Key words: inventory routing problem, Markov decision process, approximate

dynamic programming
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USING APPROXIMATE DYNAMIC PROGRAMMING TO SOLVE THE

MILITARY INVENTORY ROUTING PROBLEM WITH DIRECT DELIVERY

I. Introduction

This thesis is motivated by the need to solve a military variant of the inven–

tory routing problem (IRP). The inventory routing problem involves simultaneously

making decisions about vehicle routing and inventory resupply, typically under ven–

dor-managed inventory (VMI) practices [7]. Traditionally, a customer alerts a central

vendor when resupply at its location is necessary. However, under VMI practices, a

central vendor monitors the supply levels of its customers and chooses the amount

of inventory to replenish at each location as well as the time at which to deliver it.

Coelho et al. [7] describe inventory management practices as a “win-win,” wherein

the vendor benefits by realizing cost savings due to coordinating shipments and the

customers benefit by no longer having to allocate resources to inventory management.

When the inventory routing problem is solved, three key decisions are made at each

decision epoch: which customers to serve, how much to deliver to each customer, and

how to combine the deliveries to customers into optimal vehicle routes [7].

The IRP seeks decisions that minimize cost while satisfying a stipulated set of

constraints. Many variations of the IRP exist. The elements which describe varia–

tions of the IRP include: time horizon, structure, routing policy, fleet composition,

fleet size, supply assumptions, and demand assumptions [7]. The time horizon in–

dicates the number of decision epochs considered in the problem and is chosen so

as to reflect a planning horizon appropriate for the problem’s context. The struc–

ture refers to the vendor/customer relationship and is typically modeled with one
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vendor and multiple customers. Routing can be either direct or indirect, indicating

whether a vehicle can supply multiple customers before returning to the supplier.

Fleet composition describes the type of vehicle(s) in the problem. A homogeneous

fleet includes one type of vehicle, whereas a heterogeneous fleet has multiple types of

vehicles. The fleet size refers to the number of available vehicles, either unconstrained

or limited. The demand assumption refers to how demand is modeled in the problem.

When stochastic demand is assumed, customers’ demands are probabilistic in nature,

whereas a deterministic demand indicates that the demand at each customer is known

with certainty. The supply assumption parallels the demand assumption; it can be

either stochastic or deterministic.

The United States Army utilizes vendor-managed inventory practices when en–

gaged in combat operations to manage resupply operations. Upper-echelon organiza–

tions monitor inventory levels at lower-echelon organizations and manage resupply ef–

forts for these lower-echelon organizations. Specifically, a brigade monitors and makes

decisions regarding resupply efforts for battalions and companies. In Afghanistan, for

example, a single brigade may manage resupply efforts for as many as 36 combat

outposts (COPs), each of which serves as a base for a platoon- or company-sized

infantry element.

COPs are traditionally resupplied by ground assets which are vulnerable to im–

provised electronic device (IED) attacks [18]. Development of increasingly capable

cargo unmanned aerial vehicles (CUAVs) creates an alternative to ground resupply.

While CUAVs present an opportunity to resupply COPs without endangering lives,

the aircraft are vulnerable to hostile actions from non-friendly forces and can be

lost during a resupply effort. The risk of losing a CUAV varies based on the time

the CUAV is deployed and the location of the COP the CUAV is resupplying. The

CUAVs are a limited commodity and cannot be used in future resupply operations

2



once lost.

McCormack [18] introduces the military variant of the inventory routing problem

(MILIRP) in which inventory is not guaranteed to reach its destination. Moreover,

the MILIRP accounts for the possibilities of failed deliveries and lost vehicles due

to hostile actions by non-friendly forces when a CUAV is enroute to its customer or

returning to the depot. The long-term effect of the loss of a CUAV must be considered

before choosing to send the CUAV on a resupply mission.

The MILIRP is formulated as a discrete time, infinite-horizon Markov decision

process (MDP) with an objective of determining the optimal unmanned aerial vehi–

cle resupply policy for the sustainment of brigade combat team elements operating

in a combat environment. The optimal policy includes decisions regarding which

COPs to resupply during specific time epochs. The MILIRP formulated in this thesis

is classified as a one-to-many, direct routing problem with a homogeneous limited

fleet composition. Considering the routing assumption particularly, direct delivery

is assumed in this thesis. Direct delivery requires that every CUAV travels directly

to a single COP and returns to the depot before visiting another COP. Therefore,

optimization of vehicle routing will not be needed in the solution.

The MILIRP is formulated as a Markov decision process (MDP). When solving

an MDP, an exact solution can frequently be found using backwards induction tech–

niques. However, some MDPs are quite large and backwards induction techniques

require long computation times to provide a solution. Instead, an approximate so–

lution is found. An approximate solution, unlike an exact solution, may not be the

optimal solution. Instead, the solution is the best policy found within a reasonable

amount of time. For the MILIRP, the number of COPs is the variable which de–

termines whether an approximate solution is needed. When the number of COPs

increases above three, an approximate solution is necessary. For one, two, and three

3



COPs, an exact solution can be determined using backwards induction. Therefore, a

small instance of the MILIRP refers to instances having three or fewer COPs, whereas

a large instance of the MILIRP refers to instances having greater than three COPs.

Using an exact dynamic programming algorithm (e.g. policy iteration), small

instances of the problem with up to three COPs are solved. The necessity of an ap–

proximate dynamic program (ADP) is demonstrated using a larger number of COPs.

Then, by comparing the approximate solution to the exact solution for small instances

of the problem, the quality of the ADP can be assessed. To maximize the performance

of the ADP, the parameters of the ADP are modified. Once these parameters are de–

veloped, a larger instance of the MILIRP with up to 18 customers is approximately

solved using the ADP. Sensitivity analysis is then performed.

The remainder of this thesis is organized as follows. Chapter 2 provides a review of

literature pertinent to the MILIRP. This review includes discussion on the inventory

routing problem and a review of the background for the MILIRP as provided by Mc–

Cormack [18]. An introduction to Markov decision processes as well as approximate

dynamic programming is provided. The methodology for finding an approximate

solution to the MILIRP is considered in Chapter 3. Moreover, a formulation of the

MDP is presented, as well as the ADP algorithm. The fourth chapter summarizes the

analysis and results of the research, to include an interpretation of the optimal policy

as well as a comparison of the exact solution to the approximation. The 12-COP

problem is discussed and sensitivity analysis is provided. Chapter 5 presents conclu–

sions regarding the results of the thesis and suggests further applications and research

on the MILIRP.
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II. Literature Review

The inventory routing problem (IRP) is a thoroughly researched topic in the oper–

ations research field because many industries rely on the transportation and manage–

ment of goods. To aid in understanding the formulation and techniques for solving the

military inventory routing problem (MILIRP), the literature review describes three

main topics: the inventory routing problem, the military inventory routing problem,

and Markov decision processes (MDP). The original contribution of this thesis is then

discussed.

2.1 Inventory Routing Problem

The MILIRP is a variant of the inventory routing problem. Coelho et al. [7]

provide a summary of the literature on the IRP. The objective of an IRP is to minimize

the total cost to the supplier while meeting the demands of the customers, subject to

the following constraints. First, the inventory cannot exceed the maximum capacity

at each customer. Additionally, inventory levels cannot be negative. Third, vehicles

must start and end their routes at the supplier, and each vehicle can deliver only once

per time period. Finally, a vehicle’s capacity cannot be exceeded [7].

The IRP seeks to provide answers to three questions: (1) in which time periods

should each customer be served, (2) what amount of supplies should be delivered to

each of these customers, and (3) how should customers be combined into vehicle routes

[7]. Coelho et al. [7] and Kleywegt et al. [12] identify structural components which can

be used to describe the variants of IRPs. These characteristics include: time horizon,

structure, routing, inventory policy, fleet composition, fleet size, and demand type.

The MILIRP is formulated as an infinite time horizon, one-to-many structured, direct

routing, homogeneous fleet composition, limited fleet size, deterministic demand, and
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stochastic supply problem. To inform the formulation of the MILIRP, IRPs with

similar structures are examined. Table 1 summarizes similar IRP formulations found

in the sources (where D indicates deterministic and S indicates stochastic).

Table 1. IRP Formulations

Reference Routing Fleet size Demand Supply Solution

Bertazzi (2008) Direct Unconstrained D D Link Optimization

Barnes-Schuster & Bassok (1994) Direct Unconstrained D S Simulation

Kleywegt et al. (2002) Direct Limited S D ADP

Kleywegt et al. (2004) Multiple Limited S D ADP

MILIRP Direct Limited D S ADP

Direct delivery simplifies the IRP by removing the routing portion of the problem.

With direct delivery, a vehicle moves from the supplier to the customer and returns

immediately to the supplier without stopping at other customer locations. Bertazzi

[3] shows that routing can significantly reduce the cost for particular classes of prob–

lems. He also identifies other classes of problems in which direct delivery should

be used, such as when the capacity of the vehicle roughly equals the demand of a

customer [3]. In a later work, Bertazzi et al. [4] apply a rollout approach to solve

the IRP while considering stock-out. Barnes-Schuster & Bassok [1] develop a similar

one-to-many problem with direct delivery, but they assume stochastic demand. The

authors establish that, when a normal distribution can be used to estimate demand,

a direct routing policy should be employed if vehicle capacity is near the mean of

customer demand [1].

Coelho et al. [7] provide an introduction to the stochastic inventory routing prob–

lem (SIRP) wherein customer demand is stochastic. Shortages of supply are usually

discouraged using penalty functions based on the amount of unfilled demand. Some

problem formulations allow backlogging, i.e. allowing a supplier to fulfill unsatisfied

demand in later periods. Given the stochastic nature of these problems, the goal of
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the IRP is to determine a policy which maximizes the expected discounted value over

the time horizon of the problem [7]. Coelho et al. [7] identify three methods for solving

the SIRP: heuristic algorithms, dynamic programming, and robust optimization.

Kleywegt et al. [12] form a direct-delivery stochastic inventory routing problem

as an MDP. In particular, the states of the system are the inventory levels at each

customer, and the action space includes the amount of inventory delivered to each

customer. The state at epoch t + 1 is dependent on the amount of inventory deliv–

ered, probabilistic demand, and the supply capacity of the customer during epoch t.

Contributions are based on the traveling costs of the vehicles, shortage costs, holding

costs, and revenue. Given the large state space, an approximate dynamic program–

ming (ADP) algorithm is developed. Kleywegt et al. [12] provide an approach to

solving the IRP with direct delivery and stochastic demand for an infinite horizon

problem with homogeneous vehicles and no backlogging.

Kleywegt et al. [13] extend Kleywegt et al. [12] by removing the direct delivery

constraint; a vehicle can make up to three stops at different customers before returning

to the supplier. Relaxation of the direct delivery constraint requires the consideration

of larger state and action spaces to account for available routes and assignment of

routes to each vehicle. Due to the large size of their problem, an exact solution to the

MDP is computationally infeasible. Further development of the ADP from Kleywegt

et al. [12] is used to determine an approximate policy.

Coelho & Laporte [6] develop exact solutions for several classes of the IRP includ–

ing the multi-vehicle IRP with homogeneous and heterogeneous fleets. The authors

add additional features to the problem to address workforce management and reg–

ularity of service concerns [6]. These features include quantity consistency, vehicle

filling rate, order-up-to level, driver consistency, driver partial consistency, and visit

spacing. These features are implemented as constraints or as penalties in the ob–
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jective function. Coelho & Laporte [6] use a a branch-and-cut algorithm to find the

exact solutions to the problem classes.

The vehicle routing problem (VRP) is a component of the inventory routing prob–

lem; literature on this subject offers insight into this element of the problem. The

vehicle routing problem with stochastic demand (VRPSD) gives particular attention

to problems with stochastic demand. The VRPSD assumes that customers’ demands

are stochastic in nature, and that the true demand is realized only after a customer

is supplied. Novoa & Storer [20] formulate a single-vehicle problem in which the ob–

jective is to determine a routing policy to minimize transportation costs and satisfy

demand at each customer. An initial route is followed, but if demand cannot be

filled during a single trip, a vehicle must return to the supplier to retrieve additional

supplies. The authors use a Monte Carlo simulation to reduce computation time

for a rollout algorithm. Through the improvement of the rollout-algorithm, Novoa

& Storer [20] provide an efficient dynamic approach to solving the VRPSD for one

vehicle.

A particular nuance of the MILIRP is that vehicles can be destroyed while travel–

ing to and from the supplier which imposes a stochastic nature on the supply. Vehicle

routing problems with vehicle breakdown have a similar complexity in a civilian con–

text. Mu et al. [19] solve a variant of the VRP in which a new routing solution must be

created in the event of a vehicle breakdown. The authors develop two metaheuristic

which focus on rescheduling the route in an allotted time with a single extra vehicle

available for use in the event of a breakdown. However, the Mu et al. [19] formulation

differs fundamentally from the MILIRP in that the authors solve the re-optimiza–

tion in only a single time period. The MILIRP must be solved over an infinite time

horizon.
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2.2 The Military Inventory Routing Problem

The IRP provides a starting basis for formulating and solving the MILIRP. Mc–

Cormack [18] provides an introduction to the Army’s resupply policies and practices.

Sustainment operations allow the Army to extend its operational range for longer

periods of time, a key to the Army’s success [18]. McCormack [18] identifies four

principles of sustainment pertinent to the MILIRP: 1) responsiveness, 2) simplicity,

3) economy, and 4) survivability. The combination of these principles allows com–

manders to create timely, consistent, financially feasible, and smart policies regarding

resupply efforts.

The MILIRP is motivated by the need to sustain subordinate and geographically

disparate elements within an infantry brigade combat team (IBCT) in an austere

combat environment. An IBCT is responsible for the supply of combat outposts

(COPs) in its area of operation (AO). The relationship between an IBCT and a

COP parallels the supplier-to-customer relationship seen in vendor managed inventory

replenishment practices.

An IBCT contains a brigade support battalion (BSB) responsible for the resupply

of COPs within its AO. A supply officer within the BSB is responsible for planning

all sustainment efforts. This job entails coordinating and monitoring subordinate

units’ supply needs. A General Dynamics report found that an infantry company

requires 25,000 lbs of supplies per day, and it divides the supplies into six categories:

subsistence, construction items, ammunition, medical supplies, repair parts, and fuel

[28]. The BSB is kept informed of inventory levels at COPs through regular reporting.

This vendor managed inventory practice allows the IBCT to choose when and where

to send supplies [18].

Resupply efforts pose a significant risk to personnel in combat environments. The

Army typically operates in harsh, rugged environments that often include moun–
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tains, deserts, and jungles [18]. Army resupply efforts are traditionally heavily reliant

on ground lines of communication (GLOC) [18]. However, a lack of transportation

infrastructure and/or attacks from the enemy make GLOC resupply inherently dan–

gerous and difficult. Improvised explosive devices (IED) accounted for “65% of U.S.

deployed fatalities between November 2002 and March 2009, with 18% occurring

during sustainment operations” [10].

Despite these challenges, resupply efforts continue. Manned air assets partially fill

the resupply role but also have limitations. Pilots cannot fly in hazardous weather

conditions, and helicopters are vulnerable to man-portable air defense systems (MAN–

PADS), especially during takeoff and landing at the COPs. While some manned he–

licopters have armed escorts to mitigate the MANPADS risk, resupply missions are

canceled when the threat of attack is too high [18]. Additionally, with a limited supply

of air assets and a high operational tempo, McCormack [18] indicates that supporting

combat missions is prioritized over resupply efforts. Contractors are hired for aerial

resupply efforts, but strict constraints (including eight hour shift limits and a ban on

nighttime sorties) limit their ability to alleviate the strain on military helicopters [18].

McCormack [18] concludes that ground resupply convoys are still necessary, given the

limitations to manned aerial resupply and constraints on contractors. An infantry

officer underscored the lack of flexibility with the current system when he said, “If

the support is not anticipated (more than 72 hours out), then you are not getting the

support. There is no immediate resupply” [10].

Due to resupply challenges, the Army is considering the use of rotary cargo un–

manned aircraft vehicles (CUAVs) for use in sustainment efforts. Williams [28] ex–

plores the use of unmanned airlift at both the theater and direct delivery levels in

Department of Defense applications. Motivation to use CUAVs is prevalent, from

commanders in the field to Congressional representatives. Williams [28] indicates
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that field units frequently request unmanned aerial systems and specifically identifies

forward operating base support as an area were CUAVs could make a dramatic im–

pact. Congress is also interested in increasing the role of the unmanned aerial vehicles

(UAVs). The DOD’s Unmanned System Integrated Roadmap provides an outline of

strategic and tactical airlift goals through 2028, and it establishes the potential role

of unmanned aerial and ground systems [27]. In particular, the Army sponsored a

General Dynamics study on unmanned aircraft in resupply roles [10]. The study

recommended that the CUAV system be centrally managed, rather than dedicated

to a BSB, to allow for increased effectiveness in using the CUAV for multiple roles.

Without an exclusive resupply mission, the CUAVs may be plagued by similar issues

as manned rotary aircraft in balancing support and combat missions.

McCormack [18] identifies a number of benefits to utilizing CUAVs. First, a

dedicated contingent of CUAVs for resupply would free manned helicopters for com–

bat mission use and mitigate the risks associated with GLOC resupply. The CUAV’s

higher flight ceiling and better performance in adverse conditions would reduce MAN–

PADS threats, possibly allow for shorter supply routes, and provide a quicker, more

reliable, and more flexible delivery platform. However, some challenges must be ad–

dressed if CUAVs are used in a resupply role: 1) demand for large quantities of

supplies across area of operations, 2) effects of enemy threat and action, 3) weather,

terrain, and poor infrastructure, 4) availability of distribution assets, and 5) flexibility

to respond to changes in the operational environment [18].

Williams [28] identifies two CUAVs in development that could meet the demands

of a tactical airlift role: the Boeing A160 Hummingbird and the Lockheed Martin

Kaman K-MAX. Williams [28] reports that the two CUAVs in development (the

Hummingbird and the K-MAX) met DoD requirements during testing. The author

also indicates that the aircraft have the capability to be used in the combat zone.

11



In fact, three K-MAX vehicles were deployed to Afghanistan between 2011 and 2014

[17]. As motivation at both the tactical and strategic level for developing CUAVs

continues to grow, technical development of these air systems makes steady progress.

Barriers to CUAV development remain. Williams [28] identifies two key safety

issues. First, the CUAV must be able to recognize objects in the aircraft’s flight path

and reroute around the obstacle. Moreover, command and control of the aircraft

must be guaranteed. Without these safety measures, CUAVs may crash or fall into

the hands of the enemy.

With political and military support of the CUAV growing and technological de–

velopment nearly complete, the CUAV has the potential to positively impact the

Army’s resupply efforts. However, decision makers would benefit from a method for

managing this new platform. Without a mechanism for determining how to allocate

the CUAVs for resupply, the CUAV could be non-optimally utilized. The goal for the

MILIRP is to suggest a policy for utilizing this resource. McCormack [18] formulates

and solves the MILIRP for a single COP exactly. The original contribution of this

thesis is approximately solving the MILIRP for a large number of COPs using an

approximate dynamic program.

2.3 Markov Decision Processes

Formulating the MILIRP as a Markov decision process (MDP) provides the foun–

dation for structuring the problem. With this structure in place, solutions to the

MILIRP can be found both exactly and approximately. Puterman [22] introduces

MDPs by describing a decision maker who must make decisions at discrete points

as a system evolves over time. The decision maker chooses an action based on the

current state of the system. Once an action is chosen, the system evolves either de–

terministically or stochastically, and an immediate expected reward is gained. The
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system then arrives in a new state, and the decision maker repeats the process of

choosing an action, receiving a reward, after which the system transitions to a new

state. When considering systems with a finite set of decision epochs, a final reward

may be also be realized. The goal of an MDP is to create a policy of decision choices

which maximizes the reward a decision maker receives over the lifetime of the system.

Key to this process is the idea that future consequences must be accounted for in

earlier decisions [22].

Puterman [22] outlines the five elements of an MDP which form the structure of

the problem: states, actions, the time horizon, transition probabilities, and rewards.

The state of the system is a description of the elements of the system used to make

future decisions [22]. A state space is a set of the possible states the system can

occupy. An action describes alternatives a decision maker can choose in a particular

state. An action space is a set of the possible actions a decision maker can choose

at a particular state. A MDP can be modeled with either an infinite or a finite time

horizon. The transition probabilities describe the probability a system will transfer

from one state to another state given a particular action. Finally, the reward is either

an immediate reward or a terminating reward. This reward is also referred to as a

contribution. The actions taken based on the rewards and transition functions can

only depend on the state of the system during the current time period. Moreover, the

previous states of the system cannot affect the current decision, a key assumption for

using an MDP [22].

The following notation is used to formulate an MDP. Let T denote the discrete

set of points in time (i.e. epochs) at which decisions are made. At time t ∈ T , the

system is in state st ∈ S, where S is the set of all the possible states of a system.

The decision maker chooses action a ∈ As, where As is the set of all possible actions.

The decision maker then receives an immediate contribution, r(s, a). The transition
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function describes the probability that the system transfers to state j from state s

given action a is taken: p(j|s, a). An optimal decision rule, d(s), describes the action

the decision maker makes in state s. Once formulated, an MDP can be solved using

Bellman’s optimality equation, shown in Equation 1, where J(St) denotes the value

of being in state St at time t and λ represents the discount factor. The discount

factor indicates the present value of a single unit of the reward if it were recieved at

the next time period [22].

J(St) = max
a∈A(St)

(r(St, a) + λE{Jt+1(St+1)|St}) (1)

Bellman’s equation provides a mechanism for obtaining the exact solution to an

MDP, where a decision rule for each time epoch is determined. However, in many cases

the problem may not be computationally solvable due to the curse of dimensionality.

This limitation occurs when a problem’s state space or action space becomes too large

or the transition function becomes too complex to specify. In these instances, it may

take years for a computer to arrive at a solution. To avoid this problem, the field

of approximate dynamic programing (ADP) seeks to approximate the value function.

This approach provides an approximate solution to the problem rather than an exact

solution [23]. Powell [21] provides a standard for formulating and solving approximate

dynamic programs. To find an exact solution, backward induction is used to recur–

sively compute the expectation of the discounted value function over all states and

actions. Instead, ADP relies on forward induction using simulation to approximate

the value function of the problem. The quality of the approximate solution can be

estimated by solving a small instance of a larger problem and comparing the exact

solution found using Bellman’s equation with the approximate solution found using

a value function approximation.

Approximate value iteration (AVI) provides a method for solving ADPs by simul–
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taneously updating the value function approximation and policy approximation [21].

This approach approximates the value function by sampling states randomly and re–

peatedly approximating the value function over numerous iterations. The function

eventually converges to the correct value without looping through every state and

action. This approach is explored in the reinforcement learning community with Q-

learning, where the value of the state-action pair is estimated (rather than just the

state). Tsitsiklis & Sutton [26] provide a proof of convergence for Q-learning using

lookup table representations. However, this method cannot be used for large scale

problems given the need for a lookup table.

Approximating the value function using AVI is explored in depth by Topaloglu &

Powell [25], who exploit the concave value function structure of stochastic resource

allocation problems. Topaloglu & Powell [25] present the leveling algorithm which

builds piecewise linear approximations of the value function by sampling the gradient

of the function and maintaining concavity at each iteration. Using this algorithm,

slopes which violate monotonicity are updated by sampling a stochastic outcome and

determining the sample gradient information. If monotonicity in the slope is not

maintained, the slopes are leveled to equal the current slope’s value. After a number

of iterations, the value function is approximated. This value function approximation

is then smoothed; the old value estimate is combined with the new estimate using

an α value, also called a stepsize. The stepsize determines the rate at which the new

estimate is combined with the old estimate [21]. Topaloglu & Powell [25] provide proof

of convergence for the leveling algorithm indicating that, after a sufficient number of

iterations, the approximation will approach the exact solution. Godfrey & Powell

[11] use the same leveling algorithm to maintain monotonicity but include a dynamic

allocation of breakpoints to create the CAVE algorithm. AVI is limited in its ability

to provide a general solution for all problem classes.
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Approximate policy iteration (API) provides a solution algorithm that does not

depend on approximating a state-action pair (as in Q-learning) and possesses a strong

convergence theory [23]. Bellman’s equation is modified to represent an approxima–

tion of the value function based on the post-decision state. The post-decision state

variable, Sat , is the state the system is in once an action has been taken, but prior to

any exogenous information being realized [23]. The value of the post-decision state,

Ja(Sat ), is the value of the system existing in the post-decision state. The value func–

tion for the post-decision state is therefore the expected value of being in a state at

the next time epoch given the system is currently in a post-decision state, as shown

in Equation 2.

Jat (Sat ) = E
{

max
a∈A(St+1)

(r(St+1, a) + Jat+1(Sat+1))|Sat
}

(2)

Bellman’s equation around the post-decision state variable must be approximated.

Bradtke et al. [5] introduce the least squares temporal difference (LSTD) method

which estimates the value of a fixed policy. Within a machine learning context, tem–

poral difference algorithms allow a system to learn to predict the results of decisions

over a specific time horizon. The modification of temporal difference algorithms to

include least squares provides a more efficient use of sample data [14]. Bradtke et al.

[5] provide two temporal difference algorithms (i.e. a least-squares and recursive least

squares) and conclude that the rate of convergence for LSTD is faster than basic

temporal difference techniques.

Lagoudakis & Parr [14] introduce least squares policy iteration (LSPI). First the

authors define LSTDQ, an algorithm which approximates the state-action value func–

tion, bypassing the need for a transition function. Lagoudakis & Parr [14] then apply

LSTDQ within a policy iteration algorithm framework to create LSPI. These two

techniques combine efficient policy-search algorithms with efficient use of sample data
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[23]. LSPI is able to overcome a central issue with LSTD by not being affected by the

number of times a state is visited [23]. Lagoudakis & Parr [14] build on this method

by incorporating the use of instrumental variables (IV) into the LSTD method to

mitigate errors in approximating the independent variables due to correlations with

the error term. The method is coined the least squares approximate policy iteration

(LSAPI).

Scott et al. [23] contribute to LSAPI research by utilizing least-squares Bellman

error minimization. Powell [21] explains Bellman error as the temporal difference

which reflects the difference in estimating the value of being in a state at time t at the

current iteration and the updated iteration. Using Bellman error minimization, Scott

et al. [23] provide three augmentations to LSAPI, one of which utilizes instrumental

variables. The authors use this algorithm to solve an energy storage problem and

show that LSAPI using instrumental variables outperforms basic LSAPI.
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III. Methodology

3.1 Problem Description

McCormack [18] proposes the military inventory routing problem (MILIRP). A

notional infantry brigade combat team (IBCT) is responsible for a number of combat

outposts (COPs) within its area of operations (AO). The IBCT contains a brigade

support battalion (BSB) which manages resupply efforts for G number of COPs. The

BSB manages V number of identical CUAVs which deliver supplies to the COPs.

Each CUAV has a load capacity of Q pounds and it is assumed that each CUAV is

fully loaded when dispatched. COP i requires di pounds of supplies per time period,

a deterministic demand which depends on the size of the unit at the COP. Only direct

deliveries are considered; each CUAV visits only one COP per trip. This formulation

reduces the complexity of the problem and reflects the fact that current rotary assets

cannot combine multiple deliveries [18].

Given the austere combat environment, there is a potential for delivery failure

due to factors such as hostile actions by non-friendly forces, mechanical failures, and

extreme weather conditions. McCormack [18] proposes a tessellation of the AO in

which each hexagonal cell is identified as a high or low threat area. The probability

of a CUAV being destroyed depends on the COP being resupplied and the current

threat map. A set of K threat maps is created to reflect the periodic changes in risk

for an AO. Dijkstra’s algorithm is applied to determine an optimal path from the

BSB to each COP i for each tessellated threat map K. Associated with each optimal

path is ψik, the probability of successfully completing a one-way trip from the BSB

to COP i (and from COP i to the BSB) under threat conditions indicated by map

K.

The CUAV has two opportunities to be destroyed: either traveling to the COP
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from the BSB or returning to the BSB after delivering supplies to the COP.

With this background, the MILIRP is formulated as a Markov decision process

(MDP). When considering imposing an inventory routing formulation on the MILIRP,

the CUAVs are the vehicles, the COPs are the customers, and the BSB is the supplier.

Table 2 provides a summary of notation at the end of this chapter.

3.2 MDP Formulation

The MDP formulation includes the following components: a time horizon, states,

actions, transition probabilities, rewards, and an objective function. A finite number

of CUAVs are available at the BSB. The BSB knows the inventory level of each COP i

at any time t. At each decision epoch, the number of CUAVs deployed to each COP is

determined. An immediate reward is gained if a CUAV successfully reaches the COP.

If a CUAV fails to return to the BSB, that CUAV is considered non-operational and

cannot be used in future CUAV resupply missions. If a COP depletes its supplies, a

penalty is applied. Once all CUAVs are non-operational, the system has evolved into

an absorbing state. The objective is to determine a deterministic, stationary policy

which maximizes the expected total discounted reward.

Time Horizon

The MILIRP is formulated with an infinite time horizon, t ∈ T = {1, 2, ...}.

During a single time period a CUAV is fueled, loaded with supplies, travels from the

BSB to the COP, unloads its supplies, and returns to the BSB. It is assumed that a

fully loaded CUAV can serve each COP within the AO during this time period. At

each decision epoch, the number of CUAVs deployed to each COP is determined.

States

The state S = (x1, x2, ..., xG, v, k) ∈ S ′ captures the current amount of inventory

at G COPs, the current number of operational CUAVs, and the current threat map.
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Let Ci denote the the inventory capacity at COP i. Therefore, the state space is

S ′ = [0, C1] × [0, C2] × ... × [0, CG] × {1, 2, ..., V } × {1, 2, ..., K} if the amount of

supplies is continuous or S ′ = {0, 1, ..., C1} × {0, 1, ..., C2} × ... × {0, 1, ..., CG} ×

{1, 2, ..., V } × {1, 2, ..., K} if the amount of supplies is discrete. Let xit ∈ [0, Ci] (or

xit ∈ {0, 1, ..., CG}) denote the inventory level of COP i at time t. Let vt ∈ {1, 2, ..., V }

denote the number of operational CUAVs available at time t. Let kt denote the map

at time t. The dimensionality of the state space is G+2, depending on the number of

COPs investigated in the problem. The full state space S = S ′ ∪ {4} consists of S ′,

augmented by 4, the absorbing state. The state S = 4 denotes the situation where

no CUAVs are operational; this occurs when vt = 0. Let St ∈ S denote the state of

the system at time t.

Actions

Let A(S) denote the set of all feasible decisions when the system is in state S.

A decision a = (a1, a2, ..., aG) ∈ A(S) denotes the number of CUAVs deployed to

each COP. During a single epoch, a CUAV travels directly from the BSB to a COP,

unloads, and returns directly back to the BSB. Two constraints are placed on the

number of CUAVs which can be deployed at each time epoch. First, the number

of CUAVs deployed cannot exceed the number of operational CUAVs, vt. Second,

the total number of CUAVs deployed cannot exceed the number of operator crews

available in the BSB, κ. Let at = (a1t, a2t, ..., aGt) ∈ A(S) denote the decision made

at time t when the system is in state S, where ait ∈ {0, 1, ...,min (vt, κ)} is the number

of CUAVs sent to resupply COP i at time t.

at = Aπ(St|θ) ∈ A(St) (3)

Moreover, the following constraint must hold:
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G∑
i=1

ait ≤ min(vt, κ),∀ t ∈ T . (4)

Transition Probabilities

Transition probabilities are defined for each dimension of the state space including

the inventory levels at each COP, the number of CUAVs, and the threat map.

The inventory transitions are based on the amount of supplies gained by each COP

at time t, which depends on the routing decision, at, and the state of the system, St.

There are three possible outcomes when a CUAV is deployed on a resupply mission to

a COP: 1) successful delivery to the COP and successful return to the BSB (denoted

as an SS event), 2) successful delivery to the COP but failure to return to the BSB

(denoted as an SF event), and 3) failure to arrive at the COP enroute from the BSB

(denoted as an F event). Let ψ2
ik, ψik(1− ψik), and (1− ψik) denote the probabilities

associated with an SS, SF, and F events occurring, respectively, when a single CUAV

is sent to resupply COP i during threat conditions indicated by map k. The outcome

of a resupply decision involving multiple CUAVs delivering supplies to a particular

COP can be represented using the multinomial distribution. However, since we are

interested in the specific class of outcome (i.e., SS, SF, or S), we proceed by defining

the marginal distributions for each class, which are all binomial. We assume the

outcome of each resupply mission to a particular COP is independent of the outcome

of the resupply missions to other COPs. Let Zit,SS|St, ait denote the number of

possible successful deliveries made to COP i with a successful return to the BSB

(i.e., an SS event), during time epoch t, on map kt with ait CUAVs deployed. The

random variable Zit,SS follows a binomial distribution with parameters ait and ψ2
ik.

Let Zit,SF |St, ait denote the number of possible successful deliveries made to COP

i with an unsuccessful return to the BSB (i.e., an SF event), during time period t,

on map kt with ait CUAVs deployed. The random variable Zit,SF follows a binomial
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distribution with parameters ait and ψik(1−ψik). Let Zit,F |St, ait denote the number

of possible failed deliveries made to COP i (i.e., an F event), during time period t,

on map kt with ait CUAVs deployed. The random variable Zit,F follows a binomial

distribution with parameters ait and 1− ψik.

The amount of supplies delivered to COP i at time t is Q(Zit,SS + Zit,SF ), where

Q is the CUAV’s capacity. There is a constraint placed on the amount of supplies

which can be delivered to each COP; a CUAV’s delivery cannot result in the COP

exceeding its capacity, Ci. Moreover, if a COP’s inventory reaches zero, the COP is

immediately resupplied to capacity by ground lines of communication (GLOC). Since

all COPs are accessible via ground infrastructure, the assumption that GLOC resup–

ply is available at all COPs is realistic. However, the assumption that a commander

would wait until a COP is completely depleted to order a ground resupply is not re–

alistic. Additionally, assuming that all GLOC resupplies are success is not valid due

to the poor transportation infrastructure and the enemy actions previously discussed.

Despite these concerns, the GLOC assumptions used in this thesis are necessary to

adequately model the problem: GLOC missions ensure COPs are resupplied when

CUAVs are not available. Equation 5 is the inventory transition function for COP i.

Xi,t+1 =


Ci if Xit +Q(Zit,SS + Zit,SF )− di < 0,

min(Xit +Q(Zit,SS + Zit,SF )− di, Ci) otherwise.

(5)

In the first case, GLOC resupply is necessary and the COP is resupplied to capac–

ity. In the second case GLOC resupply is not necessary and a minimization enforces

the capacity constraint.

The transition function for the number of operational CUAVs is based on the

probability a CUAV successfully travels between the BSB and the COP. If a CUAV
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fails enroute to the COP or returning to the IBCT (i.e., events SF or F), the CUAV

is lost and cannot be used in future resupply efforts. The vehicle transition function

is given in Equation 6.

vt+1 = vt − (Zit,SF + Zit,F ) (6)

The map transition function represents the evolution of an uncontrolled, stochastic

aspect of the operational environment. The set of maps captures the threat environ–

ment. Whereas some maps represent a low threat environment with a low number

of tessellated regions labeled as high threat, other maps present a high threat envi–

ronment with a high number of tessellated regions labeled as high threat. As more

tessellated regions are labeled as high threat, delivery of supplies using the CUAVs

becomes increasingly risky. Different CUAV routes are used for each particular threat

map; recall that we apply Dijkstra’s algorithm to each COP i for each map k a priori

to solving the MDP, which allows us to find the route with the highest one-way prob–

ability of survival, ψik. An increasing number of high threat tessellated regions may

result in much lower one-way probabilities of survival, depending on the location of

the BSB, COP, and the high threat regions.

The map transition represents the probability of the threat environment changing.

If the operational environment is relatively static, the transition probabilities between

maps would be relatively low. If the operational environment changes rapidly between

high and low threats, the transition probabilities would be relatively high. It is con–

ceivable that the transition probabilities could be constructed in a variety of ways.

For example, IBCT intelligence teams working with the BSB may be able to use risk

assessments to label a tessellated region based on information such as enemy dis–

position, weather, and season. Specifically, low winds are particularly important to

successful rotary aircraft flight. Information about mechanical failures of the CUAVs
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or operational crew reliability may also be captured in this risk assessment. Alterna–

tively, historical data from enemy engagements and weather conditions could be used

to label the threat map in a similar manner.

The outcome of the resupply missions, Zt, provides the source of randomness

in the MDP where Zt = (Z1t, Z2t, ..., ZGt). The known joint probability distribu–

tion, H, of inventory, vehicle, and map transitions gives a known Markov transition

function W , according to which transitions occur. For any state S ∈ S, any ac–

tion A ∈ A(S), and any Borel subset B ⊆ S, let Z(S,A,B) ≡ {Z ∈ RG
+ × ZZ+ :

(X1,t+1, ..., XG,t+1, vt+1, kt+1) ∈ B}. Then W [B|S,A] ≡ H[Z(S,A,B)]. In other

words, for any state S ∈ S, and any action A ∈ A(S), P [St+1 ∈ B|St = S,At = A] =

W [B|S,A] ≡ H[Z(S,A,B)].

Contribution

The contribution function is defined by the amount of supplies delivered to each

COP. If the amount of supplies delivered, Q(ZSS + ZSF ), results in an inventory at

COP i which exceeds its capacity, Ci, only the amount of supplies up to the capacity

is included in the reward. An immediate cost is applied when stocking out occurs.

Let τi represent the cost of stock out at COP i. Different penalties can be used to

capture the difficulty of resupplying particular COPs via GLOC. COPs with higher

penalties would receive more attention. The contribution function is presented in

Equation 7.

r(St, at) ≡
G∑
i=1

min (Ci −Xit + di, Q(Zit,SS|ait + Zit,SF |ait))−
N∑
i=1

τiI{Xi,t+1<0} (7)

The amount of deliverable supplies is determined by taking the minimum of the

available capacity at COP i and the number of supplies delivered to COP i. No

reward is gained for any supplies which would force the COP to exceed capacity. The

indicator variable, I, equals one if the system is in a state where inventory is depleted
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and zero otherwise. This allows for a penalty to be applied when GLOC resupply is

necessary.

Value Function

The objective of the MDP is to maximize the expected total discounted value over

an infinite horizon. As with all Markov decision processes, the decisions made at time

t depend only on the current state of the system, and the decision maker does not

know what will happen in the future. To obtain a policy that maximizes the expected

total discounted reward over all t ∈ T , Bellman’s equation is used:

J(St) = max
a∈A(St)

(r(St, a) + λE{Jt+1(St+1)|St}) (8)

Using this MDP formulation, a dynamic programming algorithm is developed to

obtain an optimal policy for CUAV resupply.

3.3 Exact Solution

Two methods for solving MDPs, value iteration and policy iteration, are popular

due to their ease of implementation and strong convergence rates. The value iteration

algorithm estimates the value of a pre-decision state given a current expectation

of contributions and the expected value of possible outcomes [21]. Using an error

tolerance parameter, the algorithm continues until a convergence criterion is met.

The resulting set of actions comprises an optimal policy within a finite number of

iterations [21] [22]. Although different variants of this algorithm exist, we look instead

to the second algorithm, policy iteration, to solve the MILIRP due to its ease of

implementation on infinite horizon problems.

Using the policy iteration algorithm, small instances of the MILIRP are solved,

including the 2- and 3-COP problems. The optimal policy for these problems is then

used as a comparison to the approximate policies obtained for the 2- and 3-COP
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problems. This comparison allows the ADP parameters to be tuned to create an

algorithm which provides the best solution for small instances. Furthermore, a myopic

solution is also considered which is used to evaluate the fidelity of the ADP for large

problem instances.

3.4 Approximate Solution

The approximate dynamic program (ADP) developed applies the least squares

instrumental variables approximate policy iteration (IVAPI) algorithm. The pseudo

code for the IVAPI algorithm is shown in Algorithm 1. The IVAPI methodology

fundamentally relies on three ideas: approximate policy iteration (API), least squares

temporal differences, and Bellman error minimization using instrumental variables.

Approximate Policy Iteration

Both approximate policy iteration and approximate value iteration mirror their

exact counterparts as the two most widely used methodologies for discovering near-op–

timal policies using value function approximation. Instead of using a one-step transi–

tion matrix to solve the MDP exactly, the value function must be approximated and

updated. Looking specifically to API, the value function is approximated around the

post-decision state to avoid the need to find the exact value function.

Jat (Sat ) = E
{

max
a∈A(St+1)

(r(St+1, a) + Jat+1(Sat+1))|Sat
}

(9)

Least Squares Temporal Differences

A set of basis functions is used to create a value function approximation. Let φf (s)

be a basis function, where f ∈ F is a feature. The value function approximation is

given by Equation 10 wherein θ = (θf )f∈F is a vector of weights (or coefficients)

having one coefficient for each basis function.
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J̄a(Sat |θ) =
∑
f∈F

θfφf (S
a
t ) (10)

Since the number of features should be much smaller than the state space, es–

timating θ is significantly less computationally expensive than calculating the true

value function. However, choosing a set of basis functions can be a challenge. Classi–

cal linear regression methods can then be used to estimate θ, which is updated using

least squares temporal differences.

Least squares temporal differences is a technique for updating the value function

approximation for a fixed policy for infinite horizon discounted problems. Temporal

differences are the differences between a current estimate of the value of being in a

state and the updated value at the following iteration. Powell [21] describes temporal

differences as the change in the estimated value of a state over time. Least squares

temporal differences achieves this by fitting θ so as to zero the sum of the temporal

differences over every iteration [23].

Bellman Error Minimization using Instrumental Variables

The post-decision state, Sat , is the state of the system once an action has been

taken, but prior to any exogenous information being realized [23]. One effect of

using the post-decision state is that the least squares estimators for θ are usually

inconsistent. The inconsistency is due to the need to simulate φ(Sat ) based on Sat−1

and the dependency between Sat−1 and the error term [23]. To overcome this, Bellman

error minimization is accomplished by applying a least-squares methodology to the

Bellman error to create updated θ values. Let Φ be the matrices of fixed basis

functions. Equation 11 shows the calculation for implementing instrumental variables

Bellman error minimization.

θ̂ = [(Φt−1)T (Φt−1 − λΦt)]
−1(ΦT

t−1rt) (11)
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Least Squares Instrumental Variables Policy Iteration

Using a linear architecture, it is possible to approximate J(St) in the post-decision

state, Ja(Sat ), using a column vector of weights, θ, and a column vector with the basis

function elements, φ(Sat ). In order to calculate the optimal action, Scott et al. [23]

provide a policy function which is given in Equation 12.

Aπ(St|θ) = arg max
a∈A(St)

{
r(St, a) + λθTφ(Sat )

}
(12)

To implement IVAPI as shown in Algorithm 1, at each iteration i a random

post-decision state Sat−1,i is generated; the basis function, φ(Sat−1,i), is recorded; and

the next pre-decision state St,i is simulated. The optimal action is chosen using the

current estimation of θ as indicated by Equation 12, and the resulting contribution

and basis function are recorded. This process is then repeated over N iterations.

Once the policy evaluation loop is complete, a policy improvement step is executed in

which θ is updated using the N observed contributions and basis function evaluations.

An instrumental variable method is used for this update to avoid inconsistent least

squares estimators for θ. The policy improvement step is executed at each of N

iterations [23].

There are four main components to this algorithm: the pre- and post-decision

states, random generation of the post-decision state, the basis functions, and the

approximate policy iteration methodology. Each of these is discussed.

Pre/post decision state

The pre-decision state space is S, the state space outlined in the MDP formulation.

For example, in a 2-COP problem instance, the pre-decision state is St = {x1, x2, v, k}

where xi indicates the current inventory level at COP i, v represents the total number

of CUAVs, and k represents the current map. The post-decision state variable has

2+2G dimensions where the number of CUAVs deployed to each COP is concatenated

28



Algorithm 1 Approximate Policy Iteration Algorithm with Instrumental Variables
Bellman Error Minimization

1: Initialize θ
2: for j = 1 to N (Policy Improvement Loop)
3: for i = 1 to M (Policy Evaluation Loop)
4: Simulate a random post-decision state, Sat−1,i

5: Record φ(Sat−1,i)
6: Simulate the state transition to get St,i
7: Determine the decision, a = Aπ(St,i|θ)
8: Record C(St,i, a)
9: Record φ(Sat,i), the observation of E[φ(Sat,i)|Sat−1,i]

10: End
11: θ̂ = [(Φt−1)T (Φt−1 − λΦt)]

−1(ΦT
t−1Ct) (Policy Improvement)

12: Update θ using generalized harmonic step size rule

13: End

to the pre-decision state to form the post-decision state. For example, a pre-decision

state for the 2-COP instance may be St = {4, 8, 3, 1}, while the post-decision state

could be Sat = {4, 8, 1, 1, 0, 2}. This example indicates that there are 4 units of

inventory at COP 1; 8 units of inventory at COP 2; one CUAV remaining at the BSB;

and that the current threat map is 1. The number of vehicles, the third dimension

of the state space in this example, is updated in the post-decision state to reflect the

number of CUAVs remaining at the BSB and not being sent on a resupply mission.

Here, the post-decision state implies that in addition to the information from the

pre-decision state, zero CUAVs are deployed to COP 1 and 2 CUAVs are deployed

to COP 2. In the post-decision state, no information is known about the outcome of

the CUAV resupply missions (SS, SF, or F outcomes).

Random post decision state

In order to randomly generate the post-decision state, the following computations are

completed. First, a discrete uniform random variate is generated for vt, the current

number of operational CUAVs, from its state space {1, 2, ..., V }. Next, a random

number of CUAVs to deploy is generated, using a discrete uniform random number
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between zero and the minimum of the number of crew available and the number

of CUAVs, {0, 1, ...,min(vt, κ)}. Finally, a random number of CUAVs from those

deployed is allocated to each COP using a multinomial distribution. This procedure

creates the post-decision state for the number of CUAVs available and the actions

taken. The post-decision inventory states are generated using a random uniform

number between zero and the capacity of the COP, and the random post-decision

state for the map is determined using a discrete uniform random number between

one and the number of maps available. Alternatively, when we initialize the ADP

with inventory at full capacity, we instead use the capacity at each COP. To simulate

a transition to the next pre-decision state, a set of multinomial random variates are

generated for Zt = (Z1t, Z2t, ..., ZGt), the outcomes of the resupply missions for all

COPs. Transition to the next pre-decision state is based on these outcomes.

Basis functions

Basis functions are chosen based on the minimum number of features necessary to

provide an adequate solution. The approximation strategy for determining the value

function approximation based on the basis function is shown below:

J̄(St|θ) =
∑
f∈F

θfφf (St) (13)

Since we are approximating the post-decision state, we determine the value func–

tion approximation based on the post-decision state.

J̄a(Sat |θ) =
∑
f∈F

θfφf (S
a
t ) (14)

Powell [21] notes that choosing the components of the basis function is quite

challenging. For a robust approach, potential basis functions need to be throughly

explored. In this thesis, basis functions which consist of a first order model or a second
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order model, as well as functions with indicator variables and interaction terms, are

investigated.

API methodology

In order to determine the optimal action to take at the pre-decision state, a determin–

istic optimization technique is used to solve Equation 12. As shown in Equation 12,

this optimal action depends on the chosen contribution function. For small instances

of the MILIRP, exhaustive enumeration of all possible actions is completed, and the

optimal action is chosen. This technique is acceptable due to the small size of the

action space for the small COP instances. For the 12-COP instance, a linear integer

program is used to find the optimal action.

Using the approximate policy iteration algorithm with instrumental variables Bell–

man error minimization, an approximate dynamic program is created for the MILIRP.

Using this general formulation of the ADP algorithm we consider specific instances

of the MILIRP including the 2-COP, 3-COP, and 12-COP problems.
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Table 2. Table of Notation

Aπ = policy function
a = action, number of CUAVs to deploy to each COP
B = Borel subset
C = COP capacity
d = daily COP demand
G = number of COPs
H = known joint probability distribution of Z
I = indicator variable
J = total expected reward
K = number of threat maps
Q = CUAV capacity
r = reward/contribution function
S = state of system
t = time epoch
v = current number of CUAVs
V = number of CUAVs
W = Markov transition function
x = inventory at a COP
Z = set of random variables of the number of possible SS,

SF, and F events
A = action space
F = set of basis function features
S = state space
T = set of time epochs
τ = stock out cost (penalty)
ψ = one-way probability a CUAV successfully reaches its

destination
φ = basis function
θ = vector of weights
π = policy
λ = discount factor
κ = number of crews
4 = absorbing state
Φ = matrix of fixed basis functions
Ω = probability of remaining in the low threat map
β = probability of remaining in the high threat map
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IV. Computational Example

Using the general formulation of the MILIRP presented in Chapter 3, we find

the policy for a problem instance with 12 COPs. In order to do this, two additional

instances of the MILIRP with two and three COPs are analyzed. For the 2- and

3-COP instances, the exact and myopic solutions are first determined. Basis functions

for the ADP are explored to find the ADP’s optimal parameters. Finally, an ADP is

created for the 12-COP instance.

4.1 MDP Parameterization

The MILIRP is formulated as an infinite horizon MDP where time is discretized

into six-hour time periods. This discretization allows the day to be divided into four

equal periods. We assume that any single CUAV sortie can be completed during

a single period. A single CUAV sortie includes maintenance, fueling, loading, and

unloading actions.

We examine a 12-COP instance of the MILIRP with direct delivery. This number

is arrived at by considering the maximum dispersal of platoons in a battalion; each

COP is manned by a single platoon. With three platoons in a company and four

companies in a battalion, a battalion sized force could occupy 12 COPs. We test the

ADP at the limits of this feasible region. To aid in creating the 12-COP ADP, both

2- and 3-COP instances are also analyzed.

Each COP has a consumption rate and storage capacity based on the number of

personnel at the COP. A General Dynamics report [10] indicates that 8,000 pounds

of supplies are consumed by a platoon per day. With four periods in one day, 2,000

pounds (or one ton) of supplies per period are necessary for sustainment. For the

remainder of the thesis, we discretize supply units into one-ton units. We conserva–
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tively assume that that the COP’s capacity is three times the daily demand, bringing

COP capacity to 12 tons. We assume that the necessary number of supplies to resup–

ply all COPs are available at the BSB and that the BSB never runs out of supplies.

This assumption is reasonable since the BSB is supplied via fixed wing airlift. With

undisputed air superiority in Afghanistan, supplies arrive to the BSB with certainty.

CUAV capabilities are increasing as research and development of the systems con–

tinue. At present, Lockheed Martin’s K-MAX unmanned aircraft system helicopter

has successfully transported payloads of three tons at sea level and two tons at 15,000

feet [16]. As recently as 2012, Lockheed Martin announced that the K-MAX routinely

transported 4,200 ton load in combat conditions [17]. As a conservative estimate, we

use the two-ton capacity of the K-MAX as the CUAVs’ capacity in the computational

example.

Parameterization of the number of CUAVs available is determined based on the

Army’s Tactical Unmanned Aircraft System (TUAS) platoon [8]. In September 2010,

the TUAS platoon consisted of two crews and four CUAVs [18]. As of 2014, the

Army continues to add additional aircraft and crews to the platoon. For this thesis,

we parameterize the number of crews at two, and the number of CUAVs at four. The

number of crews indicates the number of CUAVs which can be deployed simultane–

ously. Consider, for example, when one CUAV platoon is supporting the BSB. Out

of the four vehicle CUAV fleet, at most two CUAVs can be deployed during a time

period.

The ψ values represent the probability a CUAV successfully travels between the

BSB and a COP for a specific map. Ideally, an intelligence unit would discretize

the AO and assign risk levels to each pixel within the tessellated region. This risk

level would take into account threats such as the probability of inclement weather,

mechanical issues, and hostile enemy actions. The transition between maps can be
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created based on seasons or fighting intensity. The least risky path for each map could

then be found and used to parameterize the ADP. For the computational example, we

choose to explore the case of K = 2 threat maps, one with a low threat environment

and one with a high threat environment. We create reasonable ψ values with higher

values on the low threat map and lower ψ values on the higher threat map. We use

values suggested by McCormack [18] for the map transition probabilities.

When a COP’s inventory level is depleted, a COP is immediately resupplied via

GLOC to full capacity and a penalty is applied. The penalty for a COP needing

GLOC resupply would be solicited from a logistics officer in the field and would depend

on the difficulty of resupply to the COP via GLOC and the relative importance of

using ALOC to resupply the COP. We parameterize the penalty function as ten times

the capacity at the COP. This creates a strong enough incentive to ensure the COP is

resupplied by CUAV when possible without causing a catastrophic event when GLOC

is needed.

We choose a discount factor, λ, that successfully balances future needs with present

needs. A commonly used value in this area is 0.98, and it is the value we use herein.

4.2 2-COP Problem Instance

Optimal Policy.

The 2-COP instance of the MILIRP provides initial insight into the problem. We

parameterize the ψik values as follows: ψ11 = 0.99, ψ21 = 0.95, ψ12 = 0.80, and

ψ22 = 0.90. We assume a single CUAV platoon is present at the BSB. This results

in four CUAVs being available and two crews. In this chapter, the optimal resupply

policy and value function for the two COP problem instance are presented. With the

four dimensions of the inventory level at COP 1, the inventory level at COP 2, the

number of vehicles available, and the map, an optimal action can be enumerated for
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each possible system state.

The results are partitioned by map and number of vehicles available, creating

eight categories. In each of these categories a table of optimal policies is presented in

Appendix B based on inventory levels. A pair of numbers representing the optimal

policy is provided using an (i, j) notation where i indicates the number of CUAVs

deployed to COP 1 and j indicates the number of CUAVs deployed to COP 2.

The value function is presented in Figure 1 where the color indicates the value

of being in a particular state. Although the legend indicates that the value function

fluctuates between 15 and 75, the fluctuation is actually between -119 and 79. Values

below 15 are given a red color and values above 75 are given a purple color. This

choice was made to create a better visual distinction between the values. The state

space is displayed so that Map 1 is on the left and Map 2 is on right, while the

available number of CUAVs increases by row.
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Figure 1. 2-COP J* Optimal Policy
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Trends are noticeable in the value function. Map 1 results in a higher value

function overall than Map 2 (when the number of CUAVs are equal), a result of

lower ψ-values in Map 2. As the number of CUAVs increases, the value of being in a

particular state increases. Table 3 shows the value of being in each map-vehicle state

combination when we fix the inventory state at half capacity for both COPs. The

marginal value column of Table 3 indicates the value of one additional CUAV for each

map. The marginal value of a CUAV decreases and we observe increased marginal

value in Map 1 over Map 2. This indicates that additional CUAVs are more valuable

in Map 1.

Table 3. 2 COP: CUAV Marginal Value

# CUAVs Value: Map 1 Value: Map 2 Marginal Value: Map 1 Marginal Value: Map 2

1 18.98 17.31 - -
2 42.00 40.02 23.01 22.71
3 57.82 55.98 15.82 15.96
4 69.77 68.08 11.95 12.11

Appendix B provides specific analysis on the optimal policy and optimal value

function for each subfigure in Figure 1. There are noticeable trends in the optimal

policy over the entire state space. The shape of the optimal policy, as displayed by

the tables, depends on the current map when there is more than one CUAV available.

This is likely due to the fact that the number of CUAVs that can be deployed is limited

by the number of crews (two in this computational example). Overall, CUAVs are

less likely to be deployed under Map 2 than Map 1, a result of a lower ψ-value for

Map 2. This is depicted by the number of (0,0) actions in the Map 2 optimal policy.

Under Map 2, as inventory increases at each COP, a CUAV is less likely to deploy to

that COP. However, as the number of CUAVs available increases, the states where

CUAVs deploy increases, reflecting the ability to take more risk with an increased

number of vehicles. Finally, we observe that, for lower numbers of CUAVs available,

the policy of sending one CUAV to each COP is dominated by sending two CUAVs
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to a single COP. This may be due to the desire to avoid the penalty by ensuring that

at least one of the COPs avoids a GLOC resupply.

For every map-CUAV state combination there is a notable decrease in the value

function when inventory at COPs 1 and 2 are extremely low. A local maximum is

evident under Map 1 when inventory at COP 1 is one and inventory at COP 2 is

high, except when the number of CUAVs available is one. Under Map 2, the local

maximum occurs when inventory at COP 1 is between three and nine and inventory

at COP 2 is twelve. Finally, we observe that the value function is not maximized

when both COPs have maximized inventory levels, due to the fact that a reward is

not gained for any supplies delivered which exceed the COP’s capacity.

Myopic Policy.

The myopic policy selects actions only considering the reward function in the

current time period and without consideration of how the decision will affect the

future. The policy is arrived at by letting λ = 0, creating no value from the future

outcome of the decision. The myopic policy provides a comparison for the optimal

and ADP solutions.

Figure 2 displays the value function for all state combinations when using a myopic

policy. Specific analysis of particular optimal policies and optimal value functions are

discussed in Appendix B. Overall, the figure shows that Map 2 has slightly lower

values of being in a particular state for a given number of CUAVs than Map 1. This

can be seen by comparing the graphs on the left and right of the same row. This is

due to the higher probability of successful route completion in Map 1. Additionally,

looking from top to bottom on the figure, an increase in the value of being in a state

is seen. This is due to the increased value in having more CUAVs available. While

these trends in the myopic policy are consistent with trends from the optimal policy,
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there are differences between the myopic and optimal value function representations.

When one CUAV is available (subplots a and b), the value of being in a particular

state is even lower amongst some of the states in the myopic policy than the optimal

policy. In addition, while the value of being in a state for the four CUAV case reaches

75 in the optimal policy, the myopic solution only reaches into the 50s. This reflects

the fact that the myopic solution is suboptimal.
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Figure 2. 2-COP Myopic Policy J*
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ADP Policy.

The ADP policy is created using the least squares approximate policy iteration

algorithm with instrumental variables bellman error minimization (IVAPI) algorithm.

The challenge in developing this algorithm is creating a set of basis functions that

produces adequate results. To explore potential basis function options, first and

second order models (both with and without interaction variables) are explored. In–

dicator variables particular to the problem are also examined. This includes terms

which indicate when supplies at the COPs are below a single period’s demand, and

variables which indicate when there are no CUAVs remaining but the recommended

action is to deploy CUAVs. Finally, we also include variables which are constructed

by dividing one over the current inventory at each COP. We include an intercept in

the basis function to capture the average value of the reward when all other terms

in the regression are zero. Once an ADP policy is determined using the IVAPI algo–

rithm, the ADP policy is then evaluated using a policy evaluation algorithm to obtain

exact value function results. Moreover, three cases of initialization are reported: both

COPs initialized at 50%, 75%, and 100% of capacity. This allows the value functions

of the ADP, optimal, and myopic policies to be compared at the three initial system

states of interest.

The IVAPI algorithm is implemented using M = 2000 for the inner policy eval–

uation loop and N = 12 for the outer policy improvement loop. Figure 3 compares

the ADP’s performance over fifty replications using the five sets of basis functions.

For each replication of each algorithm implementation, the final policies produced

are then evaluated using the exact policy evaluation method. The average percent

optimal for each algorithm implementation is shown in Equation 15 where πi denotes

the policy produced at replication i and S0 is the initialization state.
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% of optimal =
1

50

50∑
i=1

Ĵπi(S0)

J∗(S0)
. (15)

The myopic policy performed the poorest in terms of percent optimality, and

its performance only decreased as the inventory initialization percentage increased.

The ADP polices performed better than the myopic solution. The second order

model with interactions and indicator variables outperformed the other basis functions

substantially, reaching over 90% optimality with all three initializations. However,

there is a concern that the use of such a large set of basis functions will become

computationally expensive as the number of COPs increases.

Figure 3. 2-COP Solution Quality with Smoothing
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Figure 4 compares the ADP’s performance over fifty iterations with the same five

basis functions, but excludes the smoothing function. The first order model actually

improves when no smoothing is applied whereas the first order with interactions and

second order models do not show a statistically significant difference. However, the

second order model with interactions and the second order model with interaction

and indicator variables models decrease in performance when smoothing is removed.

Figure 4. 2-COP Solution Quality without Smoothing

Using the best basis function set identified (second order model with interactions

and indicator variables), a simulation is created to observe the performance of the

ADP over a thirty day period (i.e. 120 6-hour decision periods). Appendix B contains
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analysis of these simulations.

4.3 3-COP Problem Instance

The 3-COP instance adds a third COP to the BSB’s area of operations. We

parameterize the ψ-value between the third COP and the BSB as 92% under both

maps. Additionally, we now increase the number of available CUAVs to six and

assume a crew of three is available. All other parameters remain the same as in the

2-COP problem instance.

Optimal Policy.

Figure 5 provides the value of the optimal policy for select combinations of the

state space. While the legend indicates that the values are between -100 and 50,

in reality these values fall as low as -239 and as high as 89, which are represented

by dark red and dark blue respectively. Four general trends are observed. First, as

we move from left to right on the figure the number of available CUAVs increases,

as does the value of being in a particular state. This increase reflects the value an

additional available CUAVs adds. Second, moving from the first row to the third row,

and from the fourth row to the sixth row, we observe an increase in the values. This

increase reflects the increasing value when the inventory at COP 3 increases. Third,

the top three rows represent state combinations under Map 1 while the bottom three

rows represent state combinations under Map 2. We observe that the value of being

in a particular state increases slightly under Map 1 as compared to Map 2. This

increase reflects the higher ψ-values for COP 1 and COP 2 in Map 1. Fourth, we

observe that, as the inventory at COP 1 or COP 2 (respectively on the horizontal and

vertical axes) increases, the value of being in a particular state also increases (with

a few exceptions). These trends parallel the conclusions made when examining the
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2-COP optimal policy. Appendix C provides analysis on six optimal policies from

this graphic for further insight. The conclusion from this analysis indicates that the

same general conclusions from the 2-COP example are supported with the 3-COP

example.
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Figure 5. 3-COP J*, Optimal Policy
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Myopic Policy.

The myopic policy is determined using policy evaluation with λ = 0 which op–

timizes the reward function in the current time epoch without consideration of the

future. In Appendix C, we consider the optimal policy tables under the same state

spaces as the 3-COP optimal solution. This analysis provides the conclusion that

in every case for the myopic policy, all available CUAVs (limited by the number of

crews) are deployed in a manner that maximizes the reward for the single time epoch.

The myopic policy conclusions for the 3-COP problem parallels the conclusions from

the 2-COP myopic policy.

ADP Policy.

We create an ADP policy using the instrumental variables approximate policy

iteration (IVAPI) algorithm with N = 30 and M = 4000. We test the five basis

functions from the 2-COP problem instance. Again, we evaluate an ADP policy

using a policy iteration algorithm to obtain exact value function results. We report

on the ADP performance for three initialization states: 50%, 75%, and 100% of the

COP’s capacity. As in the 2-COP instance, this allows the ADP, optimal, and myopic

policies to be compared at the three initial system states of interest.

We test the ADP over 100 replications and report the percent optimal for each

of the five basis function sets as well as the myopic policy. When calculated with

smoothing, the results indicate that the first order basis functions perform the best

over all initialization states, as seen in Figure 6. We also test the basis functions

without smoothing; the results are shown in Figure 7. Smoothing clearly improves

performance over all initialization states.
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Figure 6. 3-COP Solution Quality with Smoothing
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Figure 7. 3-COP Solution Quality without Smoothing

With two small instances of the MILIRP explored, we now investigate the stock–

-out penalty in the 2- and 3-COP problems.

4.4 Investigation of the Stock-out Penalty, τ

We explore the penalty value for stock-out, τ . Initially, we parameterize the value

of τ = −10(Ci) which is ten times the capacity at COP i. We investigate three

additional parameterizations of the stock-out value: τ = −10(Ci)
2

, τ = −10(Ci)
4

, and

τ = 0. In order to assess the results of changing τ , we simulate optimal, myopic, and

ADP policies for each τ value over 100 replications each with a simulation length of
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120 periods. We collect data on three statistics, averaged over the 100 replications:

the number of GLOC incidents, the number of tons delivered via CUAV, and the

period in which the last available CUAV is destroyed. We initialize the simulation

with each of the COPs supplied to full capacity.

Tables 4 and 5 display the results of the simulation when τ is changed for the 2-

and 3-COP problems. The optimal and approximate policies deliver the most cargo

via CUAV when the penalty is set to zero, an average of 138 tons of supplies via

CUAV for the 2-COP problem. Additionally, the number of GLOC incidents falls to

an average of 7.8 for both the optimal and myopic policies for the 2-COP problem

when no penalty is applied. The optimal policy outperforms the myopic policy on

average for both the GLOC and ALOC statistics, but only slightly.

Given these results, we decide to remove the penalty and set τ = 0. This removes

a difficult-to-parameterize value from the model and simplifies the formulation of the

problem. We move to the 12-COP problem instance under the assumption that there

is no penalty when stock-out occurs.
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Table 4. 2-COP Stock-out Penalty Investigation

2-COP

Optimal ADP Myopic
Mean Stdev Mean Stdev Mean Stdev

τ = 0
1st - - 0.61 0.18 - -

1st with Int. - - 0.94 0.06 - -
2nd - - 0.65 0.06 - -

2nd with Int. - - 0.94 0.05 - -
2nd with Int. and Ind. - - 0.94 0.05 - -

Periods until V = 0 96.73 29.97 96.75 29.41 17.75 8.46
Tons Delivered (Air) 138.95 46.82 138.73 45.94 32.75 15.80

GLOC Incidents 7.83 3.92 7.85 3.87 16.48 1.53
Total Delivered 240 240 240 240 240 240

τ = .25C
1st - - 0.86 0.00 - -

1st with Int. - - 0.91 0.02 - -
2nd - - 0.84 0.03 - -

2nd with Int. - - 0.87 0.11 - -
2nd with Int. and Ind. - - 0.88 0.03 - -

Periods until V = 0 64.58 27.07 66.26 29.07 17.75 8.46
Tons Delivered (Air) 115.31 52.47 106.59 53.41 32.75 15.80

GLOC Incidents 9.65 4.48 14.21 6.49 16.48 1.53
Total Delivered 240 240 240 240 240 240

τ = .5C
1st - - 0.83 0.06 - -

1st with Int. - - 0.82 0.04 - -
2nd - - 0.78 0.07 - -

2nd with Int. - - 0.80 0.09 - -
2nd with Int. and Ind. - - 0.85 0.06 - -

Periods until V = 0 64.53 26.96 62.64 27.03 17.75 8.46
Tons Delivered (Air) 115.28 52.33 109.41 51.78 32.75 15.80

GLOC Incidents 9.62 4.48 10.99 4.66 16.48 1.53
Total Delivered 240 240 240 240 240 240

τ = C
1st - - 0.60 0.00 - -

1st with Int. - - 0.62 0.07 - -
2nd - - 0.63 0.03 - -

2nd with Int. - - 0.76 0.15 - -
2nd with Int. and Ind. - - 0.91 0.04 - -

Periods until V = 0 64.58 27.07 66.26 29.07 17.75 8.46
Tons Delivered (Air) 115.31 52.47 106.59 53.41 32.75 15.80

GLOC Incidents 9.65 4.48 14.21 6.49 16.48 1.53
Total Delivered 240 240 240 240 240 240
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Table 5. 3-COP Stock-out Penalty Investigation

3-COP

Optimal ADP Myopic
Mean Stdev Mean Stdev Mean Stdev

τ = 0
1st - - 0.74 0.09 - -

1st with Int. - - 0.92 0.01 - -
2nd - - 0.72 0.02 - -

2nd with Int. - - 0.90 0.02 - -
2nd with Int. and Ind. - - 0.91 0.02 - -

Periods until V = 0 100.24 26.02 89.03 29.08 23.48 12.34
Tons Delivered (Air) 168.24 47.04 160.78 51.68 56.77 26.43

GLOC Incidents 14.91 3.98 16.37 4.32 24.20 2.31
Total Delivered 360 360 360 360 360 360

τ = .25C
1st - - 0.87 0.00 - -

1st with Int. - - 0.79 0.03 - -
2nd - - 0.87 0.01 - -

2nd with Int. - - 0.73 0.03 - -
2nd with Int. and Ind. - - 0.83 0.02 - -

Periods until V = 0 46.57 17.00 48.46 16.92 22.73 10.83
Tons Delivered (Air) 119.43 45.76 87.39 33.66 53.62 21.82

GLOC Incidents 18.89 4.03 28.06 4.34 25.14 2.48
Total Delivered 360 360 360 360 360 360

τ = .5C
1st - - 0.85 0.01 - -

1st with Int. - - 0.74 0.07 - -
2nd - - 0.84 0.02 - -

2nd with Int. - - 0.64 0.09 - -
2nd with Int. and Ind. - - 0.74 0.03 - -

Periods until V = 0 45.43 17.18 36.79 15.41 22.73 10.83
Tons Delivered (Air) 117.79 47.18 94.12 39.49 53.62 21.82

GLOC Incidents 18.99 4.16 21.91 4.01 25.14 2.48
Total Delivered 360 360 360 360 360 360

τ = C
1st - - 0.80 0.02 - -

1st with Int. - - 0.52 0.10 - -
2nd - - 0.70 0.02 - -

2nd with Int. - - 0.52 0.32 - -
2nd with Int. and Ind. - - 0.54 0.15 - -

Periods until V = 0 45.00 16.80 36.79 15.41 22.73 10.83
Tons Delivered (Air) 117.36 45.88 94.12 39.49 53.62 21.82

GLOC Incidents 19.03 4.07 21.91 4.01 25.14 2.48
Total Delivered 360 360 360 360 360 360
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4.5 12-COP Problem Instance

We formulate the 12-COP problem as the final computational example wherein

12 COPs represent the maximum dispersal of platoons in a battalion across an area

of operations. We parameterize the 12-COP problem instance as follows. We create

ψ-values via a continuous uniform distribution that is bounded between 0.8 and 1

for the high threat map and between 0.99 and 1 for the low threat map. This pa–

rameterization balances the possibility of failing to make a delivery with providing a

realistic risk level at which a commander would deploy a CUAV. We use K = 2 threat

maps, representing a low and a high threat map. Additionally, given the results from

investigating τ , we remove the penalty for stock-out.

With respect to the inner maximization problem in which a best action must

be selected for the current decision epoch, complete enumeration is possible for the

smaller problem instances. However, for the 12-COP problem instance, complete enu–

meration is computationally expensive. Instead, we develop an integer program (IP)

to obtain a solution for the inner maximization problem. The IP uses the following

defined terms.

decision variables:

ai, number of CUAVs sent from the BSB to resupply COP i

yi, indicator variable where:

yi =


1 if ψiQai + xi − di ≤ 0

0 if ψiQai + xi − di > 0

constants:

θi = coefficient value corresponding to the action taken COP i

θvehicles = coefficient value corresponding to the number of CUAVs available
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IP:

max
G∑
i=1

ai(ψiQ+ λ(θi − θvehicles)) + τiyi

s.t.:

(1)
G∑
i=1

ai ≤ min (κ, v), total number of CUAVs constraint

(2) ψiQai + xi − di ≤ Ci, COP’s capacity constraint

(3) ψiQai + xi − di ≥ −Myi, GLOC penalty constraint

(4) ai ∈ Z+.

We simplify the IP with the assumption that τ = 0.

max
G∑
i=1

ai(ψiQ+ λ(θi − θvehicles))

s.t.:

(1)
G∑
i=1

ai ≤ min (κ, v), total number of CUAVs constraint

(2) ψiQai + xi − di ≤ Ci, COP’s capacity constraint

(3) ai ∈ Z+.

We then develop ADP policies using the IP within the IVAPI algorithm. We use

first order basis functions for two reasons. First, when testing the 3-COP problem

instance over five sets of basis functions, we found that the first order model performed

the best. Second, the first order model allows for a linear integer program to be

used, rather than a non-linear IP. This significantly simplifies the inner maximization

problem.
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4.6 Experimental Design

We create set of experiments to assess the proposed ADP’s solution quality, com–

putational effort, and robustness [2]. To understand the effect of parameterization on

the performance of the ADP, we create a design of experiments. Three response vari–

ables are considered: the number of ground resupply incidents (GLOC), the number

of tons delivered via CUAV (ALOC), and the number of vehicles that remain at the

end of the simulation. It is important to note that the ALOC response variable is

reported in total tons while the GLOC response variable is reported in total num–

ber of incidents. For each GLOC incident, 12 tons of supplies are delivered. We

also record computation times for the ADP to determine the computational effort

needed to solve the MILIRP. Finally, we assess the robustness of the algorithm by

experimenting with problem factors and algorithmic factors. In order to report these

values, a simulation is performed once the ADP policy has been created. We record

the three response variables at three different simulation lengths: 1-month, 2-month,

and 3-month horizons, simulating over 100 replications per treatment.

Four problem characteristics are investigated: the number of COPs (G), the num–

ber of vehicles initially available (V ), and the one-step transition matrix for the threat

maps. The one-step transition matrix contains two problem factors: Ω and β. We

denote the probability of remaining in a low threat map as Ω, and the probability

of remaining in a high threat map as β. The probability of transitioning from a low

threat map to a high threat map is represented by 1 − Ω while the probability of

transitioning from a high threat map to a low threat map is 1− β.

Each of the four problem factors are considered continuous variables. To deter–

mine the high and low factor levels for the number of COPs, we run preliminary

experiments. The results indicate that the upper limit of where the ADP policy

outperforms the myopic policy in terms of supplies delivered via ALOC is 18 COPs.
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When we explore beyond this bound to consider 27 COPs, we find that the myopic

policy delivers three times the supplies via ALOC than the ADP policy. Therefore,

we use nine as the low level and 15 as the high level for the number of COPs. This

parameterization allows the center factor level, 12, to represent the maximum num–

ber of platoons in a battalion. For the number of CUAVs, four is used as the low

factor level and eight as the high level. This allows the upper bound of the factor

to represent two platoons of CUAVs as defined by the Department of the Army [9].

Since CUAV units are organized in a 2:1 ratio of CUAVs to crews, we parameterize

the number of crews as half the number of CUAVS initially available. The transition

matrix values, Ω and β are explored at the 0.2 and 0.8 levels. The lower bound, 0.2,

represents a low probability of returning to the current threat map while the upper

bound represents a high probability of returning to the current threat map.

Four algorithmic features are also explored. The number of outer loops (N) and

inner loops (M) in the the ADP algorithm are investigated. For the inner loop, M,

values between 3,000 and 7,000 are considered. The center value of 5,000 has shown to

be adequate for some parameterizations of the 12-COP problem; investigating smaller

and larger numbers of loops provides insight into how the performance of the ADP

changes with different computational efforts. For the outer loop, N, values between

10 and 30 are used. These bounds are chosen as N = 30 has been shown to provide

adequate results for the ADP when compared to the myopic policy. By investigating

values lower than 30, the performance of the ADP can be assessed for lower compu–

tation times. The use of Bellman error minimization alone (L1) or with instrumental

variables (L2) is also considered as a two level categorical variable. We denote this

factor as IV. Finally, the use of smoothing is also investigated by either applying

smoothing (L1), or by not applying smoothing (L2). This final algorithm feature is

also a categorical variable and is denoted as SM. The problem and algorithmic factors
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and their associated levels are shown in Table 6.

Table 6. Factor Settings for Factorial Design

Description Factor Low (-1) Center (0) High (1)

P
ro

b
le

m
F

a
ct

or
s

number of COPs G 9 12 15

number of CUAVs V 4 6 8

probability of remaining in a low threat map Ω 0.2 0.5 0.8

probability of remaining in a high threat map β 0.2 0.5 0.8

A
lg

or
it

h
m

ic
F

ac
to

rs

number of inner loops M 3000 5000 7000

number of outer loops N 10 20 30

instrumental variables IV Off (L1) - On (L2)

smoothing SM On (L1) - Off (L2)

A fractional-factorial design with center runs is implemented. We create a 28−2

resolution V design with a quarter fraction of eight factors in 64 runs. We anticipate

that the eight factors previously discussed may have an effect on one of the response

variables and are explored at two levels: high (1) and low (-1). We denote the center

runs using (0). The resolution V design dictates that some two factor interactions

are aliased with three factor interactions. We use an additional four center points

(each with one of four combinations of the two categorical variables) to bring the

total number of treatment runs to 68. Using this experimental design, we create

ADP policies by calculating the θ coefficients for the basis functions. Once this is

complete, we use a simulation to obtain the response variable statistics for both the

ADP policy and the myopic policy.

Each experiment is conducted in MATLAB R2014b on an Intel(R) Xeon E5-1620

3.6 GHz processor having 32 GB memory. While all experiments are conducted on

one type of machine, experiments are performed on different individual computers.

When reporting computational effort, only the time for the ADP algorithm to run is

recorded; overhead operations and simulation times are not included. We conduct the
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two simulations per treatment (one after determining an ADP policy, and one utilizing

the myopic policy) over 100 replications. We consistently seed the experiments in both

the ADP algorithm and the simulation to decrease the variability of the results.

4.7 Results and Analysis

The fractional-factorial design is used to identify the significant factors in the

experiment and provide a basis for analysis. Using this design, we estimate all eight

single factor terms as well as all 36 two factor interaction terms and some three factor

iterations. The results of the experiment for each response variable at the end of the

three-month simulation are shown in Table 7. The column of “Coded Factor Levels”

shows the pattern of low and high levels for each factor in the treatment, in the order

they are shown in Table 6. The computation time necessary to execute the ADP

code is provided. Additionally, the mean and standard deviations for the ALOC,

GLOC, and number of CUAVs remaining responses are provided for both the ADP

and myopic policies. The final column provides a calculation of the difference in the

ALOC response variables between the ADP policy and the myopic policy after 360

periods.

The results from the experiment are shown in Table 7; the results from specific runs

provide interesting insights. We first examine the results from the experimental run

which produced the largest ALOC value over a three month period, Run 27. This run

combines the use of instrumental variables and smoothing, the low number of COPs

(9), and the high number of CUAVs (8). In this treatment, we observe that after a

one month period (not the three month period shown in Table 7), 744 tons of supplies

are delivered via ALOC, and 310 tons are delivered via GLOC (29.5 incidents). This

ALOC delivery accounts for 70.6% of the total supplies delivered during this period.

We then consider the myopic policy’s results for this treatment level: 360.3 tons are
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delivered via ALOC in the first month, and 673.7 tons are delivered via GLOC (56

incidents); only 57% of the total tons are delivered via ALOC. For the same treatment,

we observe that the ADP significantly increases the amount of supplies delivered via

ALOC. We now consider the results of the designed experiment.

We first consider the ALOC response variable: the number of tons which are de–

livered via CUAV over the 360 period simulation. The analysis provides an indication

of which factors are statistically significant in affecting the tons of supplies delivered

via ALOC. We also check assumptions before proceeding; we verify the equal vari–

ance and normality assumptions using the normal probability plot and a plot of the

residuals vs. predicted values. The plots confirm that the normality assumption is

upheld as well as the constant variance assumption. Plots of the residuals vs. the

factor values also confirms that constant variance in the residuals is, for the most

part, maintained.

In this analysis, a p-value of ≤ 0.05 is considered significant. Using a screening

experiment, we generate a regression model by determining the significant factors in

the experiment, which are shown in Table 9. This table indicates that all but one

of the main factors are significant in the model. This absence of N as a significant

factor indicates that the number of outer loops used in the ADP algorithm does

not significantly effect the ALOC response. This is valuable information in terms

of computation time as the number of outer loops can be decreased to 10 without

significantly affecting the response. The remaining seven main factors exert the most

influence on the response variable as they account for 55.7% of the total variance

in the model. The two-factor interactions account for 38.4% of the total variance,

followed by only two significant three factor interactions that contribute only 1.4%

of the variance in the model. The fact that two- and three-factor interactions are

significant complicates the interpretation and analysis of the model. It is important
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to note that, when the estimates for main effects and interactions are discussed, all

other significant factors are held constant at their average. We use this screening

design to develop a regression model with the significant factors from Table 9.

Table 9. Factor Influence on ALOC Response

Source Sum of Squares Prob >F % Contribution
IV 1,804,801.70 <.0001 0.198
Ω 864,342.10 <.0001 0.095
β 601,826.90 <.0001 0.066

SM 579,681.00 <.0001 0.064
G 569,194.80 <.0001 0.063
V 501,830.60 <.0001 0.055
M 145,408.80 0.0003 0.016

IV · Ω 362,584.60 <.0001 0.040
IV · β 146,823.10 0.0003 0.016

IV · SM 686,053.40 <.0001 0.075
Ω · SM 178,844.40 <.0001 0.020
β · SM 64,986.80 0.0116 0.007
IV · G 636,086.00 <.0001 0.070
Ω · G 240,541.20 <.0001 0.026

SM · G 157,569.30 0.0002 0.017
IV · V 205,707.60 <.0001 0.023
Ω · V 242,901.10 <.0001 0.027

SM · V 217,622.30 <.0001 0.024
G · V 186,235.40 <.0001 0.020
IV · M 112,007.40 0.0012 0.012
β · N 55,025.40 0.0196 0.006

IV · β · SM 68,081.90 0.0099 0.007
Ω · V · M 55,519.10 0.0191 0.006

Table 10 provides the significant parameter estimates and their associated p-val–

ues. The first term, instrumental variables, indicates that when instrumental variables

is not used, the average ALOC response decreases by 163 tons. Thus, using instru–

mental variables is important in the formulation of the ADP. The second term, Ω,

indicates that a 0.3 increase in the value of Ω increases the ALOC response by 116.2

tons. This means that when the probability of staying in a low threat map increases,

the ALOC response variable also increases. This makes sense as the simulation will
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remain in a low threat map for longer amounts of time allowing more CUAVs to make

successful deliveries. The third significant term, IV·SM, indicates that the interac–

tion of smoothing and instrumental variables is also important. This trend can also

be observed by considering the four center runs in Table 7. All other factors held

constant at their mid-points, out of the four combinations of the IV and SM levels,

the combination which results in the highest ALOC response is the combination of

instrumental variables and smoothing.

The fourth term captures the interaction between using instrumental variables

and the number of COPs. Looking to the seventh term, G, we note that increasing

the number of COPs decreases the response variable. This parallels the results from

initial testing done on the number of COPs, which indicated that the ADP does not

perform as well at higher number of COPs. However, looking back to the fourth

parameter (IV·G), we see that when instrumental variables is not utilized, an addi–

tional three COPs actually increases the ALOC response variable by 99.7 tons. This

conclusion is an example of the difficulty in interpreting models with significant main

effects and interactions. Moreover, the positive coefficient for IV·G-term indicates

that instrumental variables seems less effective as the number of COPs increases.

The fifth factor, β, indicates that increasing the probability of remaining in a high

threat map decreases the ALOC response variable by 97 tons. This makes sense,

as remaining in the high threat map is more risky and results in fewer CUAVs be–

ing deployed and fewer successful deliveries. The next significant factor, smoothing,

indicates that applying smoothing significantly increases the ALOC response. The

estimate for the final main factor, V, indicates that increasing the number of vehicles

by two increases the value of the response by 88.6 tons. This also makes sense as

more available CUAVs allows for more potential deliveries.

The next ten significant terms from Table 10 are two-factor interactions. Of note
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is the fact that, when we consider interactions with G (terms 11, 14, and 16), all

the estimates for the terms are negative. This indicates that even a large number of

CUAVs, a high probability of staying in the low threat map, or smoothing cannot

overcome the negative effect of having a large number of COPs. The 18th term, M, is

the lowest significant main effect. Increasing the number of inner loops results in an

increasing ALOC value. This makes sense as the higher number of inner loops should

allow for a better solution to be determined. Interestingly, the interaction term of

N and M is not significant in the model. This is unexpected; we would expect that

the interaction between the policy evaluation loop and the policy improvement loop

would affect determination of the θ-values and therefore the quality of the solution.

The lack of significance for this interaction term may indicate that the factor levels

were not spread far enough apart in the experiment to observe a significant difference

in the response. Terms 20 and 22 introduce the two significant three-factor interac–

tions. It should be noted that Ω·V·M is aliased with another three-factor interaction,

IV·β·N. We choose Ω·V·M as the significant factor because N is not found to be a

significant factor in the model. Since additional experimentation is not performed

within the scope of this thesis, it is not possible to verify this choice. The occur–

rence of significant three-factor interactions suggests that interactions between the

variables beyond the two-factor interactions are important. Specifically, the IV·β·SM

(Term 20) indicates that the combination of smoothing, instrumental variables, and

probability of remaining in a low threat map are important in combination. The only

occurrence of N in the model is found in the 23rd term which captures the two factor

interaction of β·N. With a p-value of 0.019, this term is significant, but it is the least

significant of those terms remaining in the model.
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Table 10. Coefficient Estimates for ALOC Response

# Term Estimate Lower 95% Upper 95% Prob>|t|
1 IV[L1] -162.9 -186.6 -139.3 <.0001
2 Ω 116.2 91.8 140.6 <.0001
3 IV[L1]·SM[L1] -100.4 -124.1 -76.8 <.0001
4 IV[L1]·G 99.7 75.3 124.1 <.0001
5 β -97.0 -121.4 -72.6 <.0001
6 SM[L1] 92.3 68.7 116.0 <.0001
7 G -94.3 -118.7 -69.9 <.0001
8 V 88.6 64.2 112.9 <.0001
9 IV[L1]·Ω -75.3 -99.7 -50.9 <.0001
10 Ω·V 61.6 37.2 86.0 <.0001
11 Ω·G -61.3 -85.7 -36.9 <.0001
12 SM[L1]·V 58.3 33.9 82.7 <.0001
13 IV[L1]·V -56.7 -81.1 -32.3 <.0001
14 G·V -53.9 -78.3 -29.6 <.0001
15 Ω·SM[L1] 52.9 28.5 77.3 <.0001
16 SM[L1]·G -49.6 -74.0 -25.2 0.0002
17 IV[L1]·β 47.9 23.5 72.3 0.0003
18 M 47.7 23.3 72.1 0.0003
19 IV[L1]·M -41.8 -66.2 -17.4 0.0012
20 IV[L1]·β·SM[L1] 32.6 8.2 57.0 0.0099
21 β·SM[L1] -31.9 -56.3 -7.5 0.0116
22 Ω·V·M -29.5 -53.8 -5.1 0.0191
23 β·N -29.3 -53.7 -4.9 0.0196

The R2 value indicates that the model explains 95.5% of the variance in the ALOC

response variable. A R2
adj value of 0.931 and the small difference between this value

and R2 indicates that the parameters of the model are well chosen.

Although we are interested in the total amount of cargo delivered via ALOC, we

compare the ALOC responses for the ADP policy to the responses for the myopic

policy to assess the performance of the ADP algorithm. We use a one-sided t-test

to determine whether the difference in the response variable between the myopic

policy and the ADP policy are significant at the 0.05 level for each treatment after a

three-month period simulation. The null and alternative hypotheses are shown below.

H0 : µADP, ALOC − µMyopic, ALOC = 0 H1 : µADP, ALOC − µMyopic, ALOC > 0
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The results of the t-tests are shown in Table 7. Occurrences where the ADP out–

performs the myopic solution by a statistically significant margin are recognized with

an asterisk. By examining the results, a pattern is observed. Out of the 68 experi–

mental runs, only 21 result in the ADP policy significantly outperforming the myopic

policy for the ALOC response variable, about 31%. However, if we consider only

experimental runs which use smoothing and instrumental variables, this percentage

increases to 76% with 13 of the 17 values showing a significantly better response.

Moreover, if we also only consider experiments done with the low or center number of

COPs as a factor setting, the percentage increases to 100% for all nine experiments.

This indicates that there are factors which significantly effect the performance of the

ADP compared to the myopic. We also note that the ADP seems to do well compared

to the myopic when the number of vehicles remaining at the end of the three month

simulation is greater than zero. This positive value indicates that the ADP policy

has used its CUAV in such a manner that it reserves some CUAVs for future use.

To explore these factors, we create an additional response variable which cap–

tures the difference between the myopic and ADP policies by finding the difference

between the ALOC values over a three month simulation. These differences are

provided in Table 7. Large positive differences indicate that the ADP significantly

outperformed the myopic policy. Small differences indicate that the ADP and my–

opic policies performed similarly. Large negative differences indicate that the myopic

policy significantly outperformed the ADP policy.

Using this response variable further, insight into the algorithm features can be

gained by considering Figure 8. We notice that the response variable, the difference

between the ADP and myopic policies’ ALOC values, is affected by the two categorical

variables. The combination of using instrumental variables with smoothing produces

the greatest positive differences in the policies.
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Figure 8. Smoothing and IV

We then create a regression model using the experimental design and the ALOC

difference as the regression variable to provide insight into the factors which affect

the ADP performance compared to the myopic policy’s performance. Table 11 shows

the percent contribution for each of the statistically significant terms in the model.

We observe that the six main effects contribute to 47.7% of the total variance in the

model. Instrumental variables and the number of COPs each contribute significantly,

indicating that both terms contribute towards creating a difference between the ADP

and myopic solutions. We also recognize that two other algorithmic features, smooth–

ing and the number of inner loops, also contribute significantly. Interestingly, neither

N nor β contribute significantly in this model in their main effect form. Fifteen two-–
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factor interactions are found to be significant in the model. Of note, every two-factor

interaction containing the instrumental variables factor is found to be significant with

the exception of N. The two-factor interactions account for 45.2% of the total vari–

ance in the model, nearly as much as the main effects. This indicates that higher

order interactions amongst the variables are important in creating a large difference

between the ADP and myopic policies. One three-factor interaction, IV·SM·β, is also

found to be significant, although it contributes to less than 1% of the variance in the

model.

Table 11. Factor Influence on ALOC Difference Response

Source Sum of Squares Prob >F % Contri
IV 1,804,737 <.0001 0.207
G 1,490,475 <.0001 0.171

SM 579,718 <.0001 0.067
M 145,390 0.0005 0.017
V 133,773 0.0009 0.015
Ω 66,603 0.0153 0.008

IV·G 636,086 <.0001 0.073
IV·SM 740,322 <.0001 0.085
G·SM 157,609 0.0003 0.018
IV·M 111,991 0.002 0.013
IV·V 205,753 <.0001 0.024
G·V 254,949 <.0001 0.029

SM*V 217,669 <.0001 0.025
IV·Ω 362,555 <.0001 0.042
G·Ω 486,088 <.0001 0.056

SM·Ω 178,823 0.0002 0.021
V·Ω 140,550 0.0007 0.016
IV·β 146,881 0.0005 0.017
G·β 125,972 0.0012 0.014

SM·β 65,000 0.0165 0.007
Ω·β 110,656 0.002 0.013

IV·SM·β 83,897 0.0069 0.010

Using the terms found to be significant, we create a regression model. Table 12

provides the significant terms, their coefficient estimates, and the p-value for their

t-statistic. Instrumental variables is found to be the most significant factor in the
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model, which mirrors the result found for the ALOC response variable. However, the

importance of the second term, G, is not the same as in the ALOC response model

and indicates that on average, there is a 152-ton negative effect on the difference

in ALOC values when three additional COPs are considered. The IV·SM interaction

term is again found to be significant which supports the conclusions made from Figure

8. Overall, the terms and their order of significance based on p-values are similar for

the ALOC response variable and the ALOC difference response variable. Of note is

the fact that, for the ALOC difference model, Ω’s coefficient is about a fourth the size

of the ALOC model, indicating that the effect of Ω is not as important in improving

the ADP over the myopic. Additionally, the β term which was in the ALOC model

is not statistically significant in the differences model. Instead, it seems that the

algorithmic factors as well as the number of COPs are more important in this model.

Using the R2 value, it is understood that 94.6% of the variance in the response variable

is captured with the model. Additionally, the R2
adj value of 92.0% indicates that the

model is well fit.

70



Table 12. Coefficient Estimates for ALOC Difference Response

# Term Estimate Lower 95% Upper 95% Prob>|t|
1 IV[L1] -162.9 -187.9 -137.9 <.0001
2 G -152.6 -178.4 -126.8 <.0001
3 IV[L1]·SM[L1] -104.3 -129.3 -79.4 <.0001
4 IV[L1]·G 99.7 73.9 125.5 <.0001
5 SM[L1] 92.3 67.3 117.3 <.0001
6 G·Ω -87.2 -112.9 -61.4 <.0001
7 IV[L1]·Ω -75.3 -101.0 -49.5 <.0001
8 G·V -63.1 -88.9 -37.4 <.0001
9 SM[L1]·V 58.3 32.6 84.1 <.0001
10 IV[L1]·V -56.7 -82.5 -30.9 <.0001
11 SM[L1]·Ω 52.9 27.1 78.6 0.0002
12 G·SM[L1] -49.6 -75.4 -23.9 0.0003
13 IV[L1]·β 47.9 22.1 73.7 0.0005
14 M 47.7 21.9 73.4 0.0005
15 V·Ω 46.9 21.1 72.6 0.0007
16 V 45.7 20.0 71.5 0.0009
17 G·β 44.4 18.6 70.1 0.0012
18 IV[L1]·M -41.8 -67.6 -16.1 0.0021
19 Ω·β 41.6 15.8 67.3 0.0022
20 IV[L1]·SM[L1]·β 36.2 10.4 62.0 0.0069
21 Ω 32.3 6.5 58.0 0.0153
22 SM[L1]·β -31.9 -57.6 -6.1 0.0165
23 β·N -29.3 -53.7 -4.9 0.0196

Finally, we further investigate θ, the vector of weights for the basis function, for

two particular treatments from the experiment to develop further insight into the

ADP. We first consider the θ coefficients resulting from experimental Run 27, which

produces the largest ALOC response. By analyzing the θ-values for this particular

run, insights into why the ADP performed well are gained. First, by simply graphing

the θ-values, it is evident that there is a cutoff between values near zero and those

that are not. Values that are near zero indicate that the basis function corresponding

to that value did not produce a change in the total discounted reward. For example,

the θ-value which corresponds with the current number of vehicles remaining has a

value of 48.65 for this particular experimental treatment. This means that, for each
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additional CUAV, there is an average increase in the total discounted reward of 48.65

tons with all the other variables held constant. Only 20 of the 166 basis functions

have corresponding θ-values above 1 or below -1, which we graph in Figure 9. These

20 θ-values fall into four categories of term types: the intercept, number of vehicles,

actions, or map-action interactions. The basis function which captures the current

number of vehicles has a value of 48 and was discussed above. The basis function

coefficients corresponding to the action taken at each COP have values between 43.49

and 49.71. This indicates that deploying an additional CUAV to a particular COP

increases the total discounted reward by 43 to 50 tons. Finally, the θ-values for

the interactions between the current map and the action taken at each COP varies

between -3.33 and -17.9. Due to the fact that the current map is modeled as a binary

variable (where the low risk map is zero, and the high risk map is one), deploying

CUAVs when in the high risk map decreases the total expected reward between 3.33

and 17.9 tons, depending on the COP. This shows that the basis function is capturing

the long-term effect of sending out CUAVs in the more risky map and potentially

losing the CUAV.

72



Figure 9. θ Values for Best and Worst Results

We then consider a second set of θ-values determined by choosing the experimental

treatment which performed the worst, Run 6. Of note is the fact that, unlike the

treatment considered for the best θ-values, this run did not include instrumental

variables or smoothing, algorithmic factors which have been found to be important

to the performance of the ADP. Looking at the θ-values obtained for this experimental

run, it is clear that the magnitude of the values is much smaller than the previous

θ-values, varying between -1.77 and 2.26. The poor performance of this particular

treatment makes sense as the basis function is not producing θ-values which capture

how the reward function changes. As the θ-values for the ADP approach zero, the

ADP policy approaches the myopic policy. For example, in the best case run we

observed a θ-value of 48.65 for the current number of vehicles. For this worst case run,
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we obtain a value of 1.22 for the same parameter. Despite the small magnitudes of the

θ-values for the worst run, the largest θ-values in magnitude include the same three

groupings of basis functions: the number of vehicles remaining, the current action

taken at each COP, and the map-action interactions. This indicates that despite the

fact that the magnitudes of the θ-values are low, the significant contributors to the

total discounted reward remain the same.
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V. Conclusions and Recommendations

5.1 Conclusions

First and foremost, this thesis provides the Army and Air Force with insight into

the emerging field of unmanned tactical airlift and, specifically, cargo unmanned aerial

vehicles. With high casualty rates from ground resupply efforts, the Army looks to

unmanned aerial resupply vehicles as a resource which could be used to supplement

ground resupply efforts. Every ground convoy not conducted provides an opportunity

to potentially save lives. The use of CUAVs provides other benefits: the higher flight

ceiling and better flight performance in adverse weather conditions makes unmanned

helicopters less susceptible to MANPADs, provides for greater maneuverability, and it

allows sorties to be scheduled in riskier environments than their manned counterparts.

Additionally, a more dedicated platform may enable a more reliable, quicker, and

more flexible resupply effort. The addition of a dedicated CUAV unit would also free

manned rotary assets for combat missions. However, the CUAVs’ key ability is the

potential to save lives by partially alleviating the need for ground convoy resupply

efforts.

We look to the K-MAX as a specific testament to the Army, Navy, and Air Force’s

interest in unmanned tactical airlift platforms. After a $45.8 million dollar contract,

Lockheed Martin and Kaman Aerospace Corporation successfully deployed three op–

tionally manned K-MAX helicopters to Afghanistan in 2012 [15]. During their de–

ployment, the K-MAX helicopters were used by Marines in a tactical airlift role to

decrease the number of ground convoys necessary, especially in hazardous areas. The

Washington Post [15] reported in June of 2014 that “the Marines raved about [the K-–

MAXs] utility and dependability” despite one of the three helicopters crashing (with

no injuries). Over the duration of the deployment, the Washington Post reported
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that over 4.5 million pounds of supplies were delivered via the unmanned K-MAX

over thousands of sorties.

The K-MAX’s performance between 2011 and 2014 laid the groundwork for un–

manned tactical airlift to become a reality in today’s warfare. With this operational

implementation, a capability gap exists regarding how to best apply these assets in a

war-time environment. This thesis sought to fill this gap by informing the develop–

ment of tactics, techniques, and procedures for optimal utilization of CUAV resources

for commanders in the field. Proper utilization of CUAVs will prolong the lifespan

of the CUAV and increase its utility. By providing procedures for sustaining units

via CUAV, we provide decision makers with a potentially lifesaving tool. Although

no combat environment will perfectly match the computational example provided in

this thesis, decision makers could create their own threat maps and inputs to gain

an understanding of a near-optimal policy for deployment of their CUAV resources.

Even if the policy is not followed exactly, it will provide a framework for understand–

ing how the CUAVs should be deployed and their expected lifespan, allowing these

commanders to better predict their tactical airlift capabilities and needs.

We can also look to the K-MAX’s broadening operational role to identify potential

areas where this research can inform development of CUAV capabilities. For exam–

ple, Flightglobal [24] reported on the K-MAX’s ability to transport and deploy the

Army’s unmanned ground vehicle, the Squad Mission Support System, in July 2014.

Lockheed Martin has also demonstrated K-MAX’s autonomous firefighting capability.

Given the funding and interest in developing CUAVs, it is likely that the mission of

the CUAV will continue to broaden; it will be important to look to studies like this

which can further inform the development and design of the CUAVs. By providing

sensitivity analysis on CUAV capabilities such as the number of crew required or

the cargo capacity of the CUAV, the value of CUAV capabilities can be examined.
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Moreover, analysis results can be used to inform funding and requirement decisions.

The IVAPI algorithmic developed to solve the MILIRP with direct delivery pro–

vides a policy for the allocation of CUAV assets to resupply a battalion-sized Army

unit. The ADP policy was shown to be successful in outperforming the myopic pol–

icy. Experimentation on algorithmic features allowed for the conclusion that the ADP

policy improves when high numbers of inner loops are utilized with instrumental vari–

ables and smoothing. In terms of problem features, the ADP’s performance decreases

when a large number of COPs is involved, but the algorithmic is robust to changes

in other problem features. Specific combinations of inputs resulted in up to 71% of

supplies being delivered via ALOC over a one-month horizon, 65% over a two-month

horizon, and 57% over a three-month horizon.

5.2 Limitations

The current IVAPI algorithmic does not perform well when 18 or more COPs

are considered. This inability to successfully scale the algorithm to a larger num–

ber of COPs could be due to the fact that the basis functions that were chosen do

not adequately capture the problem nuances for such large instances. The goal of

this research was originally to provide a policy for a 36-COP problem instance, the

maximum number of platoons in a brigade sized unit. Instead, we are only able to

model a problem instance one-third the size. Additionally, we only experimented

on four problem features and four algorithmic features in the designed experiment.

Sensitivity analysis on many other factors would be of interest to commanders using

this analysis and for informing the development of the ADP. For example, additional

analysis on the ψ-values for the high and low threat maps, additional threat maps,

COP capacity, the CUAV capacity, the discount factor, and the number of crews

could provide further insights.
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5.3 Future Research

There are numerous areas for future research on the MILIRP. In terms of for–

mulating the problem, the addition of supply classes would bring the model closer

to accurately representing the Army’s real world resupply procedures. Additionally,

a more realistic GLOC resupply decision point (e.g. resupplying when a COP is at

half capacity rather than completely depleted) would also significantly increase the

utility. Additional accuracy in representing the Army’s true procedures could also

be gained by modifying how demand is modeled. In this thesis, demand is modeled

deterministically, but realistically the demand at a COPs is stochastic. By modeling

demand in a stochastic nature a more realistic problem would be modeled. Finally,

we explore only a single algorithm for determining an ADP policy; exploration of

alternative ADP algorithms may produce results which scale better than the results

gained from the IVAPI algorithm.
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Appendix A. Acronyms

ADP= approximate dynamic programming

AO = area of operations

BSB = brigade supply battalion

COP = combat outpost

CUAV = cargo unmanned aerial vehicle

F = CUAV does not successfully deliver supplies

GLOC = ground lines of communication

IBCT = infantry brigade combat team

IED= improvised explosive device

IRP = inventory routing problem

IV = instrumental variables

MANPADS = man portable air defense system

MDP = Markov decision process

MILIRP= military inventory routing problem

SF = CUAV delivers supplies to COP, but does not successfully return

SIRP = stochastic inventory routing problem

SM = smoothing

SS = CUAV completes both legs of the journey

TUAS = tactical unmanned aerial system

UAV = unmanned aerial vehicles

VMIP = vendor managed inventory practices

VRP = vehicle routing problem

VRPSD = vehicle routing problem with stochastic demand
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Appendix B. Computational Example: 2-COP

Optimal Policy

Table 13 presents the optimal policy when one CUAV is available under Map 1

for each inventory combination. From the optimal policy it appears that at every

inventory level combination, a vehicle should be sent either to COP 1 or COP 2.

Overall, when inventory is low at one COP and high at the other COP, the depleted

COP is sent a CUAV. However, when inventory is above three units at both COPs,

the overall policy is to send a CUAV to COP 1. This can be explained by observing

that the ψ-value at COP 1 (0.99) is greater than at COP 2 (0.95) for Map 1. This also

explains the policy to deploy a CUAV to COP 1 when inventory at both COPs is one.

The optimal policy maximizes the expected total discounted reward by deploying the

CUAV to the COP with the higher ψ-value. An exception to this is seen at the

bottom of the policy chart where a CUAV is sent to COP 2 when inventory at COP 1

is maximized. Another exception appears to be when COP 2 is low in inventory. The

system seeks to avoid the penalty, as shown by the optimal action to send a CUAV

to COP 2 when inventory at COP 2 is low.

Figure 1a shows the value of being in each combination of inventory states under

Map 1 when one CUAV is available. The deep red in the top left corner indicates that

the value of being in a state where both COPs have low inventory levels is quite low.

The red and orange bars along the top and left of the graph similarly depict the low

value of low inventory states. A local maximum when inventory at COP 1 is seven

and inventory at COP 2 is twelve is shown in bright yellow. The local maximum’s

location is likely due to the fact that COP 2’s inventory is maximized, while COP 1’s

inventory is not. Since the optimal policy in this state is to send a CUAV to COP 1,

a full reward is gained with 99% certainty.

The optimal policy when a single CUAV is available changes from Map 1 to Map
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Table 13. 2-COP Optimal Policy, Map = 1, Vehicles = 1

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

2 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

3 (0,1) (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

4 (0,1) (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

5 (0,1) (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

6 (0,1) (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

7 (0,1) (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

8 (0,1) (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

9 (0,1) (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

10 (0,1) (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

11 (0,1) (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

12 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0)

2, as shown in Table 14. First, unlike the optimal policy under Map 1, there are

instances where the best action is to not deploy any CUAVs. This is likely due to

the fact that the ψ-values are lower at both COPs for Map 2. Given the higher

probability of losing a CUAV, the optimal policy indicates that it is better to wait

for Map 1 to deploy the CUAVs unless inventory is low. Second, the optimal action

when both COPs have inventories of one changes. In Map 2, the optimal action is to

send a CUAV to COP 2. This change is due to the higher ψ-value for COP 2 than

COP 1 in Map 2.

Figure 1b shows the value of being in a particular state (under Map 2 and when

one CUAV is available) and is similar to Figure 1a. Overall, the increased amount

of red and orange indicates an overall decrease in the value at each of the inventory

states. This decrease is due to the lower ψ-values in Map 2 than in Map 1, as well as

the decreased willingness to deploy CUAVs which in turn does not allow for rewards

to be gained. However, the dark red in the left top corner and along the left and top
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row indicates that low inventory states are indicative of low values in those states.

The local maximum shifts down to where inventory at COP 1 is 8 or 9 and inventory

at COP 2 is maximized at 12.

Table 14. 2-COP Optimal Policy, Map = 2, Vehicles = 1

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

2 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

3 (0,1) (0,1) (0,1) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

4 (0,1) (0,1) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

5 (0,1) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

6 (0,1) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

7 (0,1) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

8 (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

9 (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

10 (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

11 (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

12 (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Table 15 presents the optimal policy when two CUAVs are available under Map

1 for each inventory combination. With two CUAVs available, the optimal action

can include six possible solutions: (2,0), (0,2), (1,0), (0,1), (1,1), and (0,0). As with

the previous optimal policies, when inventory is low at one COP and high at the

other, two CUAVs are deployed to the COP needing resupply. When both COPs’

inventory levels are low, one CUAV is sent to each COP. There is also a channel in

the middle left of the optimal policy where (1,1) is the optimal action. Alternative

(2,0) dominates the optimal policy at all levels of inventory for COP 1, and COP 2

levels of inventory between one and nine. This reflects the high ψ-value for Map 1

between the BSB and COP 1. When both COPs have high levels of inventory, either

one CUAV is deployed, or none are sent at all, as shown in the bottom right corner
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of the optimal policy table.

Like the previous two figures, Figure 1c shows a sharp decrease in the value of

being in state spaces with low inventory levels for both COPs. There also seems to

be a local maximum when COP 1’s inventory is low and COP 2’s inventory is high,

as shown in the top right of the figure. From Table 15 we know the optimal policy

in these states is to send two CUAVs to COP 1. This action maximizes the expected

reward, resulting in high values of being in these states without the concern that the

delivered inventory will exceed capacity. The value of being in a state decreases to a

constant level of about 35 over the remaining states. The change from red to green

between Figures 1a and 1c show an increase in the value of being in a state when

more CUAVs are available.

Table 15. 2-COP Optimal Policy, Map = 1, Vehicles = 2

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

2 (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

3 (0,2) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

4 (0,2) (1,1) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

5 (0,2) (0,2) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

6 (0,2) (0,2) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

7 (0,2) (0,2) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

8 (0,2) (0,2) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

9 (0,2) (0,2) (1,1) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

10 (0,2) (0,2) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,0)

11 (0,2) (0,2) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,0)

12 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,1) (0,1) (0,0)

The optimal policy changes substantially between Map 1 and Map 2 when two

CUAVs are available. Table 16 indicates that the optimal policy is dominated by

(0,0), again reflecting the lower ψ-values for Map 2 compared to Map 1. Disparate

inventory levels at the COPs results in two CUAVs being deployed to the COP in
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need of resupply. There are more instances where two CUAVs are deployed to COP 2

than COP 1 due to the increased probability of a successful mission to COP 2. Only

when inventory is at one unit for both COPs is a CUAV deployed to both COPs.

One exception, when inventory is three at COP 1 and four at COP 2 results in an

optimal policy of sending one CUAV to COP 2.

Figure 1d depicts the value function for each inventory level when there are two

CUAVs available under Map 2. This figure looks similar to Figure 1c when two

CUAVs are available under Map 1. Again, there is a sharp drop off of the value

at low inventory levels and a local maximum when COP 1’s inventory is four and

COP 2’s inventory is 12. Overall, the value function seems to decrease on this figure

compared to the figure from Map 1, reflecting the lower ψ-values in Map 2.

Table 16. 2-COP Optimal Policy, Map = 2, Vehicles = 2

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

2 (0,2) (0,2) (0,2) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

3 (0,2) (0,2) (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

4 (0,2) (0,2) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

5 (0,2) (0,2) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

6 (0,2) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

7 (0,2) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

8 (0,2) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

9 (0,2) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

10 (0,2) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

11 (0,2) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

12 (0,2) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

The optimal policy with three CUAVs available under Map 1 closely resembles

the optimal policy for two CUAVs available under Map 1. This similarity is likely due

to the limiting factor of crews. Looking to Table 17, we see that the (1,1) action is

optimal over a wider range of inventory levels than in the two CUAV scenario. This
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difference in policy is due to having a CUAV in reserve.

As with the previous value function figures, the value of being in a particular state

increases overall when a CUAV is added, as seen in Figure 1e. Low levels of inventory

at both COPs causes a large decreases in the value of being in that state. A local

maximum is still depicted at low levels of COP 1 inventory and high levels of COP 2

inventory. The value of being in a particular state decreases slightly as the inventory

levels move away from this maximum.

Table 17. 2-COP Optimal Policy, Map = 1, Vehicles = 3

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

2 (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

3 (0,2) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

4 (0,2) (1,1) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

5 (0,2) (1,1) (1,1) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

6 (0,2) (1,1) (1,1) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

7 (0,2) (0,2) (1,1) (1,1) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

8 (0,2) (0,2) (0,2) (1,1) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

9 (0,2) (0,2) (0,2) (1,1) (1,1) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

10 (0,2) (0,2) (0,2) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,0)

11 (0,2) (0,2) (0,2) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,0)

12 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,1) (0,1) (0,0)

With three CUAVs available under Map 2 as shown in Table 18, the optimal

policy is similar to the optimal policy when two CUAVs are available under Map 2.

The difference lies in the expansion of instances where (0,1) is optimal. In the two

CUAV scenario, only one (0,1) action was recommended, whereas in the three CUAV

optimal policy, (0,1) is recommended for inventory levels at COP 2 between two and

four, and all COP 1 inventory levels. The (0,1)’s in general replace (0,0)’s, which is a

response to the extra CUAVs available. With three CUAVs, more risk can be taken.

Figure 1f appears similar to Figure 1e. However, there is an overall decrease in
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the value between these two figures. As with other value function figures with Map

2, there is a local maximum when COP 1’s inventory is five and COP 2’s inventory

is 12.

Table 18. 2-COP Optimal Policy, Map = 2, Vehicles = 3

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

2 (0,2) (0,2) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

3 (0,2) (0,2) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

4 (0,2) (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

5 (0,2) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

6 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

7 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

8 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

9 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

10 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

11 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

12 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Again, the optimal policy when four CUAVs are available under Map 1 is similar

to the two and three CUAV optimal policies under Map 1 as seen in Table 19. The

central band of (1,1)’s are slightly changed, and one additional anomaly is observed

where a (1,1) replaces a (2,0) and a (0,2) replaces a (1,1).

In Figure 1g we note an overall increase in value function from the figures depicting

instances with three CUAVs available. The sharp drop in value at the low inventory

levels and the local maximum are again observed.
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Table 19. 2-COP Optimal Policy, Map = 1, Vehicles = 4

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

2 (1,1) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

3 (0,2) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

4 (0,2) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

5 (0,2) (1,1) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

6 (0,2) (0,2) (1,1) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

7 (0,2) (0,2) (1,1) (1,1) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

8 (0,2) (0,2) (0,2) (1,1) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

9 (0,2) (0,2) (0,2) (0,2) (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (1,1) (2,0)

10 (0,2) (0,2) (0,2) (0,2) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,0)

11 (0,2) (0,2) (0,2) (0,2) (1,1) (1,1) (1,1) (1,1) (0,2) (1,1) (1,1) (1,0)

12 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,1) (0,1) (0,0)

Finally, with four available CUAVs under Map 2, the optimal policy closely re–

sembles the optimal policy when two or three CUAVs are available under Map 2

(Table 20. In this policy, some (0,1)’s shift to the right when inventory is low at both

COPs. This indicates that more risk can be assumed (sending two CUAVs instead

of one and sending one CUAV instead of two) with the extra CUAVs available. The

need to reserve CUAVs is relaxed.

Figure 1h confirms a slight decrease in value function when switching from Map

1 to Map 2. Additionally, the sharp decrease at at low inventory levels is still seen,

as well as the local maximum.
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Table 20. 2-COP Optimal Policy, Map = 2, Vehicles = 4

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

2 (0,2) (0,2) (0,2) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

3 (0,2) (0,2) (0,2) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

4 (0,2) (0,2) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

5 (0,2) (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

6 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

7 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

8 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

9 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

10 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

11 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

12 (0,2) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Myopic Policy

Tables 21 and 22 show the myopic policy under Map 1. The myopic policy is to

send a CUAV to COP 1 unless inventory at COP 1 is 12 or inventory at COP 2 is

one, with two exceptions. This reflects the highest ψ-value under Map 1 occurring

between COP 1 and the BSB. The myopic policy remains constant when more than

vehicle is available, as shown in Table 22. Except when inventory at COP 2 is one or

when inventory at COP 1 is high, the myopic action is to send two CUAVs to COP

1 (again reflecting a high ψ-value under Map 1 for COP 1).
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Table 21. 2-COP Myopic Policy, Map = 1, Vehicles = 1

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

2 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

3 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

4 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

5 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

6 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

7 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

8 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

9 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

10 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

11 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

12 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0)

Table 22. 2-COP Myopic Policy, Map = 1, Vehicles = 2/3/4

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

2 (0,2) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

3 (0,2) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

4 (0,2) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

5 (0,2) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

6 (0,2) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

7 (0,2) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

8 (0,2) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

9 (0,2) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

10 (0,2) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (2,0)

11 (0,2) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)

12 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (1,1) (1,1)

Tables 23 and 24 provide the myopic policy under Map 2. Note that the myopic

policy tables for Map 2 are the transposes of the myopic policy tables for Map 1; this
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is a reflection of the higher ψ-value for COP 2 than COP 1 under Map 2. In general,

the maximum number of CUAVs available (limited by crews) is sent to COP 2.

Table 23. 2-COP Myopic Policy, Map = 2, Vehicles = 1

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (0,1) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)

2 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0)

3 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0)

4 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0)

5 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0)

6 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0)

7 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0)

8 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0)

9 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0)

10 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0)

11 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (1,0)

12 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)

Table 24. 2-COP Myopic Policy, Map = 2, Vehicles = 2/3/4

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,1) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0)

2 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (1,1) (1,1) (2,0)

3 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (1,1) (1,1) (2,0)

4 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (1,1) (1,1) (2,0)

5 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (1,1) (1,1) (2,0)

6 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (1,1) (1,1) (2,0)

7 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (1,1) (1,1) (2,0)

8 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (1,1) (1,1) (2,0)

9 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (1,1) (1,1) (2,0)

10 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (1,1) (1,1) (2,0)

11 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (1,1) (1,1) (1,1)

12 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (0,2) (1,1) (1,1)
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ADP Policy

Figures 10, 11, and 12 show the inventory level at COPs 1 and 2 as well as the

number of CUAVs available over a 30-day period using the optimal policy, a sample

ADP policy, and the myopic policy. Figure 10, which was created using the optimal

policy, indicates that for this sample path, only two CUAVs were destroyed over the

30-day period. While COP 1 has more stable and higher inventory levels, COP 2’s

inventory never drops below four units. Although the current map is not displayed

in the graphic, it should be noted that it is likely that CUAVs were usually deployed

when the system was in Map 1.

Figure 10. 2-COP 30-day sample path of the optimal policy

Figure 11 shows the sample path when an ADP policy is used in the simulation.

After 30 days only two CUAVs are destroyed, and both COPs have inventory levels
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of 11. Compared to the optimal policy, there is more variation in inventory levels for

both COPs. Additionally, sending two CUAVs to a single COP is a more frequent

action in the ADP simulation than in the optimal simulation. Again, COP 1 has

higher inventory levels in general over the length of the simulation, a product of the

higher ψ-values for COP 1 in Map 1 coupled with the tendency to wait for Map 1 to

deploy CUAVs.

Figure 11. 2-COP 30-day sample path of an IVAPI policy (with second order basis
functions)

Figure 12 shows the sample path when the myopic policy is used in the simula–

tion. In this particular simulation, COP 1’s inventory level follows the exact same

path as COP 2’s, and is hidden beneath the red lines and circles. All four CUAVs

are destroyed in the first 15 decision epochs, a product of the fact that under the

myopic policy CUAVs are deployed even when inventory levels and threat conditions
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(indicated by Map 2) are quite high.

Figure 12. 2-COP 30-day sample path of the myopic policy

The results in this chapter suggests that IVAPI (when used with a second order

model with indicator variables and interaction terms) is promising. With the 2-COP

computational example fully explored, we turn to the 3-COP problem instance. The

results from the 3-COP problem instance are used to evaluate the consistency of the

ADP and basis functions for future use in the 12-COP problem instance.
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Appendix C. Computational Example: 3-COP

Optimal Policy

Table 25 displays the optimal policy under Map 1 when one CUAV is available

and inventory at COP 3 is one. We observe that for a majority of the inventory

levels at COPs 1 and 2, the optimal decision is to send a CUAV to COP 3. This is

understandable as COP 3’s inventory is quite low. However, as inventory at COP

1 drops to one or inventory at COP 2 drops to one, the single CUAV is sent to the

depleted COP. When more than one COP is depleted, the CUAV is deployed to the

COP with the higher ψ-value. For example, ψ21 is greater than ψ31. Therefore when

inventory at COPs 2 and 3 are one and inventory at COP 1 is higher than three, we

observe that the CUAV is deployed to COP 2 rather than COP 3. When all COPs

are at inventory levels of one, the CUAV is sent to COP 1, the COP with the highest

ψ-value under Map 1.

Table 25. 3-COP Optimal Policy, Map = 1, Vehicles = 1, Inventory at COP 3 = 1

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0)

2 (0,1,0) (0,1,0) (1,0,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

3 (0,0,1) (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

4 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

5 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

6 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

7 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

8 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

9 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

10 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

11 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

12 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)
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Table 26 displays the optimal policy under Map 1 when three CUAVs are available

and inventory at COP 3 is six. When inventory at COP 1 is low and inventory at

COP 2 is high, the optimal action is to send three CUAVs to COP 1. However, as

COP 1’s inventory increases, the three available CUAVs are split between COP 1

and COP 2. Not until inventory at COP 1 is 12 does the optimal policy change to

sending all three CUAVs to COP 2. When inventory levels at both COPs 1 and 2 are

high, the CUAVs are evenly split between the COPs or divided amongst the COPs.

In every state, all three available CUAVs are being deployed.

Table 26. 3-COP Optimal Policy, Map = 1, Vehicles = 3, Inventory at COP 3 = 6

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,2,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

2 (1,2,0) (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

3 (1,2,0) (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

4 (1,2,0) (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

5 (1,2,0) (2,1,0) (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

6 (1,2,0) (2,1,0) (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

7 (1,2,0) (2,1,0) (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

8 (1,2,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,0,1)

9 (0,3,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,0,1)

10 (0,3,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,1,1) (1,1,1) (1,0,2)

11 (0,3,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,1,1) (1,1,1) (1,0,2)

12 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,2,1) (0,2,1) (0,1,2) (0,1,2) (0,0,3)

Table 27 displays the optimal policy under Map 1 when six CUAVs are available

and inventory at COP 3 is 12. With a crew of three, only three CUAVs can be

deployed in a single time epoch. When inventory levels at both COP 1 and COP 2

are high, only two CUAVs are deployed. This reflects the high inventory level at COP

3 and the desire to reserve CUAVs for later use when the COPs have lower inventory

levels. Otherwise, when inventory at either COP is low and the inventory level at
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the other COP is high, all three CUAVs are sent to resupply the more depleted COP.

When inventory levels for COPs 1 and 2 are about equal, the three CUAVs are split

between the two COPs.

Table 27. 3-COP Optimal Policy, Map = 1, Vehicles = 6, Inventory at COP 3 = 12

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,2,0) (2,1,0) (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

2 (1,2,0) (2,1,0) (2,1,0) (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

3 (1,2,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

4 (1,2,0) (1,2,0) (2,1,0) (2,1,0) (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

5 (0,3,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

6 (0,3,0) (1,2,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

7 (0,3,0) (1,2,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

8 (0,3,0) (0,3,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (3,0,0)

9 (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,0,0)

10 (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (2,1,0) (1,1,0) (2,0,0)

11 (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,1,0) (1,1,0) (1,0,0)

12 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (1,2,0) (0,2,0) (1,1,0) (0,1,0) (1,0,0)

Table 28 displays the optimal policy under Map 2 when one CUAV is available

and inventory at COP 3 is one. The optimal policy here is (with three exceptions) to

send a CUAV to COP 3 to avoid the GLOC penalty. While under Map 1, the optimal

decision when supply at COP 1 was low was to resupply COP 1. However, due to

the fact that COP 3 has the highest ψ-value in Map 2, the optimal action usually is

to send a CUAV to COP 3.
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Table 28. 3-COP Optimal Policy, Map = 2, Vehicles = 1, Inventory at COP 3 = 1

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

2 (0,0,1) (1,0,0) (1,0,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

3 (0,0,1) (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

4 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

5 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

6 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

7 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

8 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

9 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

10 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

11 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

12 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

Table 29 displays the optimal policy under Map 2 when three CUAVs are available

and inventory at COP 3 is six. Unlike under Map 1, there are many instances where

the optimal policy is to deploy no CUAVs due to the lower ψ-values in Map 2. When

inventory at COP 2 and COP 3 are high, the optimal policy to send CUAVs to COP

3 (again, a reflection of the high COP 3 ψ-value under Map 2). When inventory at

COP 1 or COP 2 becomes one, the depleted COPs are replenished instead of serving

COP 3.
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Table 29. 3-COP Optimal Policy, Map = 2, Vehicles = 3, Inventory at COP 3 = 6

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,2,0) (2,1,0) (2,1,0) (2,0,1) (2,0,1) (2,0,1) (2,0,1) (2,0,1) (2,0,1) (2,0,1) (2,0,1) (2,0,1)

2 (0,3,0) (0,2,1) (0,2,1) (0,1,2) (0,0,3) (0,0,3) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

3 (0,3,0) (0,2,1) (0,1,2) (0,0,3) (0,0,3) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

4 (0,3,0) (0,2,1) (0,1,2) (0,0,3) (0,0,3) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

5 (0,3,0) (0,1,2) (0,0,3) (0,0,3) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

6 (0,3,0) (0,1,2) (0,0,3) (0,0,3) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

7 (0,3,0) (0,1,2) (0,0,3) (0,0,3) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

8 (0,3,0) (0,1,2) (0,0,3) (0,0,3) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1)

9 (0,3,0) (0,1,2) (0,0,3) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

10 (0,3,0) (0,1,2) (0,0,3) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,1) (0,0,1) (0,0,3) (0,0,3) (0,0,3)

11 (0,3,0) (0,0,1) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3)

12 (0,3,0) (0,0,1) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3)

Finally, Table 30 displays the optimal policy under Map 2 when six CUAVs are

available, and inventory at COP 3 is maximized at 12. Unless inventory at COP 1 is

one or inventory at COP 2 is one or two, the optimal policy is to deploy no CUAVs.

When COP 1 or 2 has an inventory of one, all three CUAVs are deployed to the

depleted COP(s) to avoid a GLOC penalty.
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Table 30. 3-COP Optimal Policy, Map = 2, Vehicles = 6, Inventory at COP 3 = 12

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

2 (0,3,0) (0,2,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

3 (0,3,0) (0,1,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

4 (0,3,0) (0,1,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

5 (0,3,0) (0,1,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

6 (0,3,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

7 (0,3,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

8 (0,3,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

9 (0,3,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

10 (0,3,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

11 (0,3,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

12 (0,3,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

The optimal policy tables reflect three ideas. First, as the number of available

CUAVs increases, more risk is taken and additional CUAVs are deployed. Second,

Map 1 is preferred over Map 2 due to larger ψ-values in Map 1 than in Map 2 for

the first two COPs. Finally, as inventory level at a COP increases, a CUAV is less

likely to be deployed to that COP. Again, these optimal policy tables support the

same general conclusions from the 2-COP example.

Myopic Policy

Table 31 displays the myopic policy under Map 1 when one vehicle is available

and COP 3’s inventory is one. Unless COP 1 or COP 2 has an inventory level of one,

the optimal action is to send a CUAV to COP 3 to avoid the GLOC penalty. When

inventory levels at COP 1 or COP 2 are one, the single available CUAV is sent to the

depleted COP. When both COPs have inventory levels of one, the CUAV is deployed

to COP 1, a reflection of the higher ψ-value for COP 1 under Map 1.
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Table 31. 3-COP Myopic Policy, Map = 1, Vehicles = 1, Inventory at COP 3 = 1

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0)

2 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

3 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

4 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

5 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

6 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

7 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

8 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

9 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

10 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

11 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

12 (0,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

Table 32 displays the myopic policy under Map 1 when three vehicles are available

and COP 3’s inventory is six. When inventory at COP 1 is less than seven, usually

the optimal policy is to send a CUAV to COP 1. However, as COP 1’s inventory

increases, the three CUAVs are split between COP 1 and COP 2. When inventory at

COP 1 is maximized, the CUAVs are sent to COP 2 and/or COP 3.
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Table 32. 3-COP Myopic Policy, Map = 1, Vehicles = 3, Inventory at COP 3 = 6

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,2,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

2 (0,3,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

3 (0,3,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

4 (0,3,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

5 (0,3,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

6 (0,3,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

7 (0,3,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

8 (0,3,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,0,1)

9 (0,3,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,0,1)

10 (0,3,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,1,1) (1,1,1) (1,0,2)

11 (0,3,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,1,1) (1,1,1) (1,0,2)

12 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,2,1) (0,2,1) (0,1,2) (0,1,2) (0,0,3)

Table 33 displays the myopic policy under Map 1 when six vehicles are available

and COP 3’s inventory is maximized at 12. The myopic policy for this state is very

similar to the previous policy (map = 1, CUAVs = 3, and inventory at COP 3 = 6).

This is a reflection of the fact that the number of CUAVs which can be deployed in

a single time epoch is limited by the number of crews. This difference between the

policies is found when inventory at both COP 1 and COP 2 are higher than nine. In

Table 33, a CUAV is deployed to COP 3 less than in Table 32. This myopic policy

tends to spread CUAVs out over more COPs at high levels of inventory rather than

sending all three CUAVs to a single COP.
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Table 33. 3-COP Myopic Policy, Map = 1, Vehicles = 6, Inventory at COP 3 = 12

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (1,2,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

2 (0,3,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

3 (0,3,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

4 (0,3,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

5 (0,3,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

6 (0,3,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

7 (0,3,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

8 (0,3,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (3,0,0)

9 (0,3,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0) (2,1,0)

10 (0,3,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (2,1,0)

11 (0,3,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,2,0) (1,1,1) (1,1,1)

12 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (1,1,1) (1,1,1)

Table 34 displays the myopic policy under Map 2 when one vehicle is available

and COP 3’s inventory is one. The optimal action for all states is to send the CUAV

to COP 3. This is a product of the high ψ-value in Map 2 for COP 3 and the low

inventory level at COP 3.
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Table 34. 3-COP Myopic Policy, Map = 2, Vehicles = 1, Inventory at COP 3 = 1

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

2 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

3 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

4 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

5 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

6 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

7 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

8 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

9 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

10 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

11 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

12 (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1)

Table 35 displays the myopic policy under Map 2 when three vehicles are available

and COP 3’s inventory is six. With the exception of inventory levels of one at COP

1 or COP 2, the optimal policy is to deploy the CUAV to COP 3. When inventory

at COP 1 or COP 2 is one, CUAVs are deployed to the depleted COP.
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Table 35. 3-COP Myopic Policy, Map = 2, Vehicles = 3, Inventory at COP 3 = 6

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

2 (0,3,0) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3)

3 (0,3,0) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3)

4 (0,3,0) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3)

5 (0,3,0) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3)

6 (0,3,0) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3)

7 (0,3,0) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3)

8 (0,3,0) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3)

9 (0,3,0) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3)

10 (0,3,0) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3)

11 (0,3,0) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3)

12 (0,3,0) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3) (0,0,3)

Finally, Table 36 displays the myopic policy under Map 2 when six vehicles are

available and COP 3’s inventory is maximized at 12. When inventory at COP 2 is

below eight, the optimal policy is usually to send three CUAVs to COP 2. When

inventory at COP 2 increases, the CUAVs are split between the COPs or all sent to

COP 1 (when inventory at COP 1 is low).

104



Table 36. 3-COP Myopic Policy, Map = 2, Vehicles = 6, Inventory at COP 3 = 12

Inventory COP 2

1 2 3 4 5 6 7 8 9 10 11 12

In
ve

n
to

ry
C

O
P

1

1 (2,1,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0) (3,0,0)

2 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (3,0,0)

3 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (3,0,0)

4 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (3,0,0)

5 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (3,0,0)

6 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (3,0,0)

7 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (3,0,0)

8 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (3,0,0)

9 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (2,1,0) (2,1,0) (2,0,1)

10 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (1,2,0) (2,1,0) (2,0,1)

11 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (1,2,0) (1,2,0) (1,2,0) (1,1,1) (1,1,1)

12 (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,3,0) (0,2,1) (0,2,1) (1,1,1) (1,1,1)

In every case for the myopic policy, all available CUAVs (limited by the number of

crews) are deployed in a manner that maximizes the reward for the single time epoch.

The myopic policy conclusions for the 3-COP problem parallels the conclusions from

the 2-COP myopic policy.
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